• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Wu, SHI Ke-bin, HE Jian-xin, LIU Liang, YANG Hai-hua. Creep characteristics and model study of composite geomembrane with different film thicknesses[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 955-961. DOI: 10.11779/CJGE202105021
Citation: YANG Wu, SHI Ke-bin, HE Jian-xin, LIU Liang, YANG Hai-hua. Creep characteristics and model study of composite geomembrane with different film thicknesses[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 955-961. DOI: 10.11779/CJGE202105021

Creep characteristics and model study of composite geomembrane with different film thicknesses

More Information
  • Received Date: August 17, 2020
  • Available Online: December 04, 2022
  • Through 90 days of creep tests, the creep laws of composite geomembrane at different thickness levels are compared and analyzed. The previous typical creep models are classified and compared with the creep test results. An empirical creep model based on thickness level is proposed to verify its applicability and reliability. Based on the analysis of materials and creep data, a three-parameter viscoelastic constitutive model is proposed, and its rationality is demonstrated by using the Marquardt optimization iterative algorithm and the global optimization to solve model parameters. The results show that the composite geomembrane exhibits strong lateral contraction under the long-term tensile action of the load. The instantaneous displacement of the load increases rapidly, and the strain increment decreases with the increase of time, and finally tends to be stable. The strain of different film thicknesses is little affected by time. When the load level is 60%, every 0.1 mm increase in film thickness from 0.4 mm to 0.9 mm reduces the strain by about 6% in long-term stability. The empirical creep model based on thickness can effectively reflect the relationship between creep strain and time of two films, and the initial stage has better fitting effect. The three-parameter viscoelastic constitutive model is suitable for the attenuation creep curve and can accurately reflect the final strain of the materials in the creep stage.
  • [1]
    顾淦臣. 土工膜用于水库防渗工程的经验[J]. 水利水电科技进展, 2009, 29(6): 34-38, 48. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD200906012.htm

    GU Gan-cheng. Experience of applying geomembrane in reservoir seepage control[J]. Advances in Science and Technology of Water Resources, 2009, 29(6): 34-38, 48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD200906012.htm
    [2]
    岑威钧, 温朗昇, 和浩楠. 水库工程防渗土工膜的强度、渗漏与稳定若干关键问题[J]. 应用基础与工程科学学报, 2017, 25(6): 1183-1192. doi: 10.16058/j.issn.1005-0930.2017.06.011

    CEN Wei-jun, WEN Lang-sheng, HE Hao-nan. Strength, leakage and stability problems of impermeable geomembrane for reservior project[J]. Journal of Basic Science and Engineering, 2017, 25(6): 1183-1192. (in Chinese) doi: 10.16058/j.issn.1005-0930.2017.06.011
    [3]
    束一鸣, 吴海民, 姜晓桢. 中国水库大坝土工膜防渗技术进展[J]. 岩土工程学报, 2016, 38(增刊1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S1003.htm

    SHU Yi-ming, WU Hai-min, JIANG Xiao-zhen. The development of anti-seepage technology with geomembrane on reservoirs and dams in China[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S1): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S1003.htm
    [4]
    BLACK P J, HOLTZ R D. Performance of geotextile separators five years after installation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(5): 404-412. doi: 10.1061/(ASCE)1090-0241(1999)125:5(404)
    [5]
    PETROV R J, ROWE R K. Geosynthetic clay liner (GCL)-chemical compatibility by hydraulic conductivity testing and factors impacting its performance[J]. Canadian Geotechnical Journal, 1997, 34(6): 863-885. doi: 10.1139/t97-055
    [6]
    李倩. 土工膜蠕变机理及其长期预测研究[D]. 济南: 山东大学, 2009.

    LI Qian. Research on Mechanism and Long-Term Prediction of Geomembrances Creep[D]. Jinan: Shandong University, 2009. (in Chinese)
    [7]
    李艳琴. 复合土工膜蠕变性能的研究[D]. 济南: 山东大学, 2006.

    LI Yan-qin. Study on Creep Properties of Composite Geomembrances[D]. Jinan: Shandong University, 2009. (in Chinese)
    [8]
    王钊. 土工合成材料的蠕变试验[J]. 岩土工程学报, 1994, 16(6): 96-102. doi: 10.3321/j.issn:1000-4548.1994.06.011

    WANG Zhao. Creep test for geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(6): 96-102. (in Chinese) doi: 10.3321/j.issn:1000-4548.1994.06.011
    [9]
    王钊, 李丽华, 王协群. 土工合成材料的蠕变特性和试验方法[J]. 岩土力学, 2004, 25(5): 723-727. doi: 10.3969/j.issn.1000-7598.2004.05.011

    WANG Zhao, LI Li-hua, WANG Xie-qun. Creep properties and testing methods of geosynthetics[J]. Rock and Soil Mechanics, 2004, 25(5): 723-727. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.05.011
    [10]
    王广月, 李华銮, 李艳琴. 复合土工膜蠕变性能的试验研究[J]. 岩土力学, 2009, 30(6): 1599-1603. doi: 10.3969/j.issn.1000-7598.2009.06.011

    WANG Guang-yue, LI Hua-luan, LI Yan-qin. Experimental research on creep properties of composite geomembrane[J]. Rock and Soil Mechanics, 2009, 30(6): 1599-1603. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.06.011
    [11]
    JEON Y H, KIM S H, YOO H K. Assessment of long-term performances of polyester geogrids by accelerated creep test[J]. Polymer Testing, 2002, 21(5): 489-495. doi: 10.1016/S0142-9418(01)00097-6
    [12]
    MAHDAVI R, GOODARZI V, ALI KHONAKDAR H, et al. Experimental analysis and prediction of viscoelastic creep properties of PP/EVA/LDH nanocomposites using master curves based on time-temperature superposition[J]. Journal of Applied Polymer Science, 2018, 135(38): 46725-46736. doi: 10.1002/app.46725
    [13]
    YANG T C, CHIEN Y C, WU T L, et al. Effects of heat-treated wood particles on the physico-mechanical properties and extended creep behavior of wood/recycled-hdpe composites using the Time-temperature superposition principle[J]. Materials, 2017, 10(4): 365-377. doi: 10.3390/ma10040365
    [14]
    DIAS M H, JANSEN K M B, LUINGE J W, et al. Effect of fiber-matrix adhesion on the creep behavior of CF/PPS composites: temperature and physical aging characterization[J]. Mechanics of Time-Dependent Materials, 2016, 20(2): 245-262. doi: 10.1007/s11043-016-9294-z
    [15]
    MARTIN P, ROBERT K, LLJA K, et al. Determination of the long-term properties in laminate-thickness direction of textile-reinforced thermoplastic composites under compression using time-temperature superposition[J]. Advanced Engineering Materials, 2016, 18(3): 369-375. doi: 10.1002/adem.201500475
    [16]
    WINESETT D A, ZHU S, SOKOLOV J, et al. Time-temperature superposition of phase separating polymer blend films[J]. High Performance Polymers, 2000, 12(4): 599-602. doi: 10.1088/0954-0083/12/4/315
    [17]
    刘华北. 土工合成材料循环受载、蠕变和应力松弛特性的统一本构模拟[J]. 岩土工程学报, 2006, 28(7): 823-828. doi: 10.3321/j.issn:1000-4548.2006.07.004

    LIU Hua-bei. Unified constitutive modeling of the cyclic, creep and stress relaxation behavior of geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 823-828. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.07.004
    [18]
    MURPHY G P. The influence of geoform creep on performance of a compressible inclusion[J]. Geotextiles and Geomembranes, 1997, 15(1): 121-130.
    [19]
    李丽华, 王钊, 陈轮. 加速土工合成材料蠕变试验的荷载叠加法[J]. 岩土工程学报, 2007, 29(3): 410-413. doi: 10.3321/j.issn:1000-4548.2007.03.016

    LI Li-hua, WANG Zhao, CHEN Lun. Load superposition for accelerating creep test of geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 410-413. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.03.016
    [20]
    姜海波. 土石坝坝体、坝基和水库库区土工膜防渗体力学特性及渗透系数研究[D]. 乌鲁木齐: 新疆农业大学, 2011.

    JIANG Hai-bo. Study on Mechanical Properties and Permeability Coefficient of Impervious Body with Geomembrane for Earth Rockfill Dam and Reservoir Area[D]. Wulumuqi: Xinjiang Agricultural University, 2011. (in Chinese)
    [21]
    土工合成材料测试规程:SL235—2012[S]. 2012.

    Test Procedure for Geosynthetics: SL235—2012[S]. 2012. (in Chinese)
    [22]
    周志刚, 李雨舟. 土工格栅蠕变特性及其黏弹塑性损伤本构模型研究[J]. 岩土工程学报, 2011, 33(12): 1943-1949. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112022.htm

    ZHOU Zhi-gang, LI Yu-zhou. Creep properties and viscoelastic-plastic-damaged constitutive model of geogrid[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1943-1949. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112022.htm
    [23]
    包承纲, 童军, 丁金华. 土工合成材料流变参数合理选择的研究[J]. 岩土工程学报, 2015, 37(3): 410-418. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503004.htm

    BAO Cheng-gang, TONG Jun, DING Jin-hua. Reasonable selection of rheological parameters of geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 410-418. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503004.htm
    [24]
    SIRIWARDANE H, GONDLE R, KUTUK B. Analysis of flexible pavements reinforced with geogrids[J]. Geotechnical and Geological Engineering. 2010, 28(3): 287-297. http://www.researchgate.net/profile/Raj_Gondle/publication/226265774_Analysis_of_Flexible_Pavements_Reinforced_with_Geogrids/links/00b49531885b7ae9f7000000
  • Cited by

    Periodical cited type(4)

    1. 王桂林,王力,王润秋,任甲山. 干湿循环后贯通型锯齿状红砂岩节理面剪切本构模型. 岩土力学. 2025(03): 706-720 .
    2. 王宇,夏厚磊,茆苏徽,闫亮. 泥岩卸荷损伤-水次序作用下的劣化规律研究. 岩土工程学报. 2024(02): 385-395 . 本站查看
    3. 孙强,高千,张玉良,胡建军,耿济世,周书涛,袁士豪. 干热岩开发中高温水-岩作用下岩石应力腐蚀及多场损伤问题. 地球科学与环境学报. 2023(03): 460-473 .
    4. 邓华锋,骆祚森,张景昱,周美玲,李建林. 库岸边坡消落带水-岩作用研究进展与展望. 三峡大学学报(自然科学版). 2023(05): 95-104 .

    Other cited types(6)

Catalog

    Article views (258) PDF downloads (261) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return