• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Guang-xin. Load and resistance in stability analysis of geotechnical engineering with safety factor method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 918-925. DOI: 10.11779/CJGE202105016
Citation: LI Guang-xin. Load and resistance in stability analysis of geotechnical engineering with safety factor method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 918-925. DOI: 10.11779/CJGE202105016

Load and resistance in stability analysis of geotechnical engineering with safety factor method

More Information
  • Received Date: November 15, 2020
  • Available Online: December 04, 2022
  • The definition and different expressions of safety factor in stability analysis of geotechnical engineering are discussed, and the regulation of distinction between load and resistance in the stability analysis are pointed out. In the stability analysis in geotechnical engineering, the buoyancy of rock mass and structures under static water level shall have the same status of their gravity. The calculated results by use of water pressures on their surfaces have to be equal to those by use of deducting buoyancy. For the saturated soil mass in seepage field, the calculated results by use of the water pressures have to be equal to those by use of considering buoyancy and seepage force on soil skeleton. In the stability analysis, the forces or moments as the loads should have greater weight, thus some reverse forces and moments with little uncertainty will be treated as negative loads rather than the positive resistances. Accordingly, the load and resistance can be defined well provided that safety factor is expressed as the strength reduction factor in the analysis of stability against sliding.
  • [1]
    建筑基坑支护技术规程:JGJ 120—99[S]. 1999.

    Technical Specification for Retaining and Protection of Building Excavation: JGJ 120—99[S]. 1999. (in Chinese)
    [2]
    建筑边坡工程技术规范:GB 50330—2002[S]. 2002.

    Technical Code for Building Slope Engineering: GB 50330—2002[S]. 2002. (in Chinese)
    [3]
    建筑地基基础设计规范:GB 50007—2011[S]. 2011.

    Code for Design Building Foundation: GB 50007—2011[S]. 2011. (in Chinese)
    [4]
    建筑边坡工程技术规范:GB 50330—2013[S]. 2013.

    Technical Code for Building Slope Engineering” Second Edition: GB 50330—2013[S]. 2013. (in Chinese)
    [5]
    陈祖煜. 土质边坡稳定分析[M]. 北京: 中国水利水电出版社, 2003.

    CHEN Zu-yu. Soil Slope Stability Analysis[M]. Beijing: China Water Conservancy and Hydropower Press, 2003. (in Chinese)
    [6]
    葛修润. 岩石疲劳破坏的变形控制率、岩石力学试验的实时X射线CT扫描和边坡坝基坑稳定分析的新方法[J]. 岩土工程学报2008, 30(1): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200801003.htm

    GE Xiu-run. Deformation control law of rock failure, real-time X-ray CT scan of geotechnical testing, and new method of stability analysis of slopes and dam foundations[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(1): 1-20.(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200801003.htm
    [7]
    建筑桩基技术规范:JGJ 94—2008[S]. 2008.

    Technical Code for Building Pile Foundation: JGJ 94—2008[S]. 2008. (in Chinese)
    [8]
    建筑基坑支护技术规程:JGJ 120—2012[S]. 2012.

    Technical Specification for Retaining and Protection of Building Excavation: JGJ 120—2012[S]. 2012. (in Chinese)
    [9]
    上海市标准:基坑工程技术规范:DG/TJ8—61—2010[S]. 2010.

    Shanghai Stand Code for Design of Excavation Engineering: DG/TJ8—61—2010[S]. 2000. (in Chinese)
    [10]
    建筑基坑工程技术规范:YB 9258—97[S]. 1997.

    Code for Technique of Building Foundation Pit Engineering: YB 9258—97[S]. 1997. (in Chinese)
    [11]
    水利水电工程地质勘察规范:GB 50487—2008[S]. 2008.

    Code for Engineering Geological Investigation of Water Resources and Hydropower: GB 50487—2008[S]. 2008. (in Chinese)
    [12]
    DUNCAN J M. State of the art. Limit equilibrium and finite element analysis of slopes[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(7): 577-596.
    [13]
    岩土锚杆与喷射混凝土支护工程技术规范:GB 50086—2015[S]. 2015.

    Technical Code for Engineering of Ground Anchorages and Shotcrete Support: GB 50086—2015[S]. 2015. (in Chinese)
    [14]
    铁路桥涵地基和基础设计规范:TB 10002—2005[S]. 2005.

    Code for Design on Subsuil and Foundation of Railway Bridge and Culvert: TB 10002—2005[S]. 2005. (in Chinese)
  • Related Articles

    [1]WANG Luyang, WU Qi, ZHOU Zhenglong, ZHANG Xinlei, WANG Binghui, CHEN Guoxing. Experimental study on development patterns of volumetric strain and predictive modeling for saturated coral sands[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1965-1973. DOI: 10.11779/CJGE20230522
    [2]WU Qi, WANG Luyang, LIU Qifei, ZHOU Zhenglong, MA Weijia, CHEN Guoxing. Experimental study on development model of excess pore pressure for saturated coral sand based on shear strain characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2091-2099. DOI: 10.11779/CJGE20220956
    [3]ZUO Kangle, GU Xiaoqiang. Experimental study on liquefaction characteristics of sand with fines under different particle size ratios[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1461-1470. DOI: 10.11779/CJGE20220401
    [4]YE Yun-xue, ZOU Wei-lie, HAN Zhong, LIU Xiao-wen. General model for relationship between void ratio and matric suction in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 927-933. DOI: 10.11779/CJGE201905016
    [5]LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021
    [6]ZOU Wei-lie, WANG Xie-qun, LUO Fang-de, ZHANG Jun-feng, YE Yun-xue, HU Zhong-wei. Experimental study on SWCCs under equal stress and equal void ratio states[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1711-1717. DOI: 10.11779/CJGE201709020
    [7]ZHAO Ding-feng, RUAN Bin, CHEN Guo-xing, XU Ling-yu, ZHUANG Hai-yang. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888-895. DOI: 10.11779/CJGE201705013
    [8]LI Guang-xing. On soil skeleton and seepage force[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1522-1528. DOI: 10.11779/CJGE201608021
    [9]CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Liquefaction characteristics and mechanism of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1165-1174. DOI: 10.11779/CJGE201607001
    [10]Liu Xu, Wang Jianrong, Liu Jing. Modified Brandt’s elastic theory for porous granular media and skeleton elastic wave velocity of water saturated soils[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 26-29.
  • Cited by

    Periodical cited type(3)

    1. 祝方才,周俊杰,赖国森,晏仁,刘海媚. 破碎岩体隧道洞口开挖诱导滑坡与古滑坡耦合分析. 湖南工业大学学报. 2024(03): 1-8 .
    2. 刘杰,杨轶博,郭督,马志宏. 地震作用下双层土质边坡稳定性上限分析. 沈阳大学学报(自然科学版). 2024(03): 237-245 .
    3. 唐先习,李昊杰,李明泽,王之鲁. 地聚物固化黄土力学性能及边坡稳定性研究. 湖南大学学报(自然科学版). 2024(09): 133-144 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return