• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN Rui, YUAN Xiao-ming. Holistic equivalent linearization approach for seismic response analysis of soil layers[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 603-612. DOI: 10.11779/CJGE202104002
Citation: SUN Rui, YUAN Xiao-ming. Holistic equivalent linearization approach for seismic response analysis of soil layers[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 603-612. DOI: 10.11779/CJGE202104002

Holistic equivalent linearization approach for seismic response analysis of soil layers

More Information
  • Received Date: December 12, 2019
  • Available Online: December 04, 2022
  • The limitations of the traditional equivalent linearization approaches are investigated. The concept and algorithm of the holistic equivalent shear strain are proposed, and a new program for calculating seismic response of the equivalent linearized soil is compiled. The research indicates that the traditional approaches for the equivalent shear strain with 0.65 times the maximum shear strain are not suitable for simulating the shear stain of soil layers in strong nonlinear cases. Based on the holistic optimization, the participation and completeness of the holistic equivalent shear strain are constructed. The participation is determined by the effective shear strain threshold. All shear strain waves whose peak values exceed the threshold value are used to participate in the calculation to ensure the integrity of shear strain information, and the zero-crossing method is used to ensure that there is a unique relationship between the effective equivalent shear strain and the shear strain time history. By taking 1963 sets of records in the four types of sites with surface PGA from 0.04g to 1.21g in KiK-net underground arrays as samples to compare the new method with the other existing methods, the results show that the proposed concepts and formulas are correct and reasonable, and they can solve the problem of simulating strong nonlinear seismic amplification.
  • [1]
    廖振鹏. 地震小区划(理论与实践)[M]. 北京: 地震出版社, 1989.

    LIAO Zhen-peng. Seismic Microzonation (Theory and Practice)[M]. Beijing: Seismological Press, 1989. (in Chinese)
    [2]
    徐扬, 赵晋泉, 李小军, 等. 基于汶川地震远场强震动记录的厚覆盖土层对长周期地震动影响分析[J]. 震灾防御技术, 2008, 3(4): 345-351. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY200804004.htm

    XU Yang, ZHAO Jin-quan, LI Xiao-jun, et al. Study on effect of thick sedimentary layers on long-period ground motion from far-field strong motion records of Wenchuan earthquake[J]. Technology for Earthquake Disaster Prevention, 2008, 3(4): 345-351. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY200804004.htm
    [3]
    王海云, 谢礼立. 自贡市西山公园地形对地震动的影响[J]. 地球物理学报, 2010, 53(7): 1631-1638. doi: 10.3969/j.issn.0001-5733.2010.07.014

    WANG Hai-yun, XIE Li-li. Effects of topography on ground motion in the Xishan Park, Zigong city[J]. Chinese Journal of Geophysics, 2010, 53(7): 1631-1638. (in Chinese) doi: 10.3969/j.issn.0001-5733.2010.07.014
    [4]
    吴志坚, 王兰民, 陈拓, 等. 汶川地震远场黄土场地地震动场地放大效应机制研究[J]. 岩土力学, 2012, 33(12): 3736-3740. doi: 10.16285/j.rsm.2012.12.021

    WU Zhi-jian, WANG Lan-min, CHEN Tuo, et al. Study of mechanism of site amplification effects on ground motion in far field loess during Wenchuan Ms8.0 earthquake[J]. Rock and Soil Mechanics, 2012, 33(12): 3736-3740. (in Chinese) doi: 10.16285/j.rsm.2012.12.021
    [5]
    GRIFFITHS S C, COX B R, RATHJE E M. Challenges associated with site response analyses for soft soils subjected to high-intensity input ground motions[J]. Soil Dynamics and Earthquake Engineering, 2016, 85: 1-10. doi: 10.1016/j.soildyn.2016.03.008
    [6]
    李晓飞, 孙锐, 袁晓铭. 现有等效线性化分析程序在实际软场地计算结果方面的比较[J]. 自然灾害学报, 2015, 24(4): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201504007.htm

    LI Xiao-fei, SUN Rui, YUAN Xiao-ming. The Comparison of existing equivalent linear response analysis program for actual soft site in KiK-net Array[J]. Journal of Natural Disaster, 2015, 24(4): 56-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201504007.htm
    [7]
    SCHNABEL P B, LYSMER J, SEED H B. SHAKE: A computer program for earthquake response analysis of horizontally layered sites[R]. Berkeley: University of California, Earthquake Engineering Research Center, 1972.
    [8]
    SHAKE2000 User's Manual[M]. Washington: GeoMotions, LLC, 2011.
    [9]
    李晓飞, 孙锐, 于啸波, 等. 实际硬场地下现有等效线性化分析程序的对比[J]. 地震工程与工程振动, 2014, 34(1): 947-954. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC2014S1150.htm

    LI Xiao-fei, SUN Rui, YU Xiao-bo, et al. The comparison of existing equivalent linear analysis program under actual stiff site based on KiK-net Array[J]. Earthquake Engineering and Engineering Vibration, 2014, 34(1): 947-954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC2014S1150.htm
    [10]
    李瑞山, 袁晓铭, 李程程. 中硬场地下两种土层地震反应方法与精确解的对比[J]. 地震工程学报, 2015, 37(2): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201502048.htm

    LI Rui-shan, YUAN Xiao-ming, LI Cheng-cheng. A comparison between different seismic response analysis methods and exact solution for medium hard soil sites[J]. Journal of Earthquake Engineering, 2015, 37(2): 40-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201502048.htm
    [11]
    王鸾, 袁近远, 汪云龙, 等. 基于软土场地实测记录的三种土层地震反应分析方法可靠性研究[J]. 自然灾害学报, 2018, 27(5): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201805002.htm

    WANG Luan, YUAN Jin-yuan, WANG Yun-long, et al. Reliability comparison of three kinds of seismic response analysis methods for soil layers in soft soil site[J]. Journal of Natural Disasters, 2018, 27(5): 12-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201805002.htm
    [12]
    李兆焱, 袁晓铭, 王鸾, 等. 巨厚场地三种土层地震反应分析程序对比检验[J]. 地震工程与工程振动, 2017, 37(4): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201704005.htm

    LI Zhao-yan, YUAN Xiao-ming, WANG Luan, et al. Verification of three methods for calculating earthquake response of soil layers in deep sites[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(4): 42-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201704005.htm
    [13]
    杨洋, 孙锐, 杨洪搏. 国际上两种典型土层地震反应分析程序对比研究[J]. 世界地震工程, 2017, 33(3): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201703003.htm

    YANG Yang, SUN Rui, YANG Hong-bo. Contrasting study between two international typical soil layers seismic response analysis programs[J]. World Earthquake Engineering, 2017, 33(3): 17-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201703003.htm
    [14]
    李瑞山, 袁晓铭, 李程程. 基于黏弹性解的土层地震反应分析程序LSSRLI-1和SHAKE2000的对比[J]. 地震工程与工程振动, 2015, 35(3): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201503003.htm

    LI Rui-shan, YUAN Xiao-ming, LI Cheng-cheng. Visco-elastic solution based comparison between the ground response analysis programs LSSRLI-1 and SHAKE2000[J]. Earthquake Engineering and Engineering Vibration, 2015, 35(3): 17-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201503003.htm
    [15]
    ZALACHORIS G, RATHJE E M. Evaluation of one-dimensional site response techniques using borehole arrays[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2015, 141(12): 53-65.
    [16]
    GRIFFITHS S C, COX B R, RATHJE E M. Challenges associated with site response analyses for soft soils subjected to high-intensity input ground motions[J]. Soil Dynamics and Earthquake Engineering, 2016, 85: 1-10.
    [17]
    RATHJE E M, KOTTKE A R, TRENT W L. Influence of input motion and site property variabilities on seismic site response analysis[J]. J Geotech Geoenv Eng, ASCE, 2010, 136: 607-619.
    [18]
    KAKLAMANOS J, BRADLEY B A, THOMPSON E M, et al. Critical parameters affecting bias sand variability ins ite-response analyses using KiK-net downhole array data[J]. Bull Seism Soc Am, 2013, 103(3): 1733-1749.
    [19]
    袁晓铭, 李瑞山, 孙锐. 新一代土层地震反应分析方法[J]. 土木工程学报, 2016, 49(10): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201610015.htm

    YUAN Xiao-ming, LI Rui-shan, SUN Rui. A new generation method for earthquake response analysis of soil layers[J]. China Civil Engineering Journal, 2016, 49(10): 95-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201610015.htm
    [20]
    YOSHIDA N, KOBAYASHI S, SUETOMI I, et al. Equivalent linear method considering frequency dependent characteristics of stiffness and damping[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(3): 205-222.
    [21]
    ASSINMAKI D, KAUSEL E. An equivalent linear algorithm with frequency and pressure-dependent moduli and damping for the seismic analysis of deep sites[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9/10/11/12): 959-965.
    [22]
    蒋通, 邢海灵. 水平土层地震反应分析考虑频率相关性的等效线性化方法[J]. 岩土工程学报, 2007, 29(2): 218-224. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702012.htm

    JIANG Tong, XING Hai-ling. An equivalent linear method considering frequency-dependent soil properties for seismic response analysis[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 218-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200702012.htm
    [23]
    National Research Znstitute for Earth Science and Disaster Resilience(NIED) Strong-Motion Seismograph Networks (K-NET,Kik-net)[OL].http://www.Kyoshin.bosai.go.jp
    [24]
    建筑抗震设计规范:GB 50011—2010[S]. 2010.

    Code for Seismic Design of Buildings: GB 50011—2010[S]. 2010. (in Chinese)
    [25]
    DARENDELI M B. Development of A New Family of Normalized Modulus Reduction and Material Damping Curves[D]. Austin: The University of Texas at Austin, 2001.
    [26]
    中国地震动参数区划图:GB 18306—2015[S]. 2015.

    Seismic Ground Motion Parameters Zonation Map of China: GB18306—2015[S]. 2015. (in Chinese)
  • Related Articles

    [1]ZHANG Siyu, ZHANG Yonggan, LU Yang, LIU Sihong. Experimental study on freezing deformation characteristics of unsaturated expansive soils considering cyclic freeze-thaw and initial anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1004-1013. DOI: 10.11779/CJGE20231279
    [2]WANG Yapeng, LI Guoyu, CHEN Dun, MA Wei, ZHANG Xuan. Deformation characteristics and shakedown behaviors of frozen silty clay under complex cyclic stress paths[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 134-139. DOI: 10.11779/CJGE2023S20017
    [3]LI Ya-jie, WANG Xu-dong, WANG Ya-ping, CHANG Yin-sheng. Deformation characteristics of sand in confined aquifer under cyclic pumping-recharging groundwater[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1943-1949. DOI: 10.11779/CJGE201810023
    [4]YU Wei-jian, WANG Wei-jun, WEN Guo-hua, ZHANG Nong, WU Hai, ZHANG Yong-qing. Deformation mechanism and control technology of coal roadway under deep well and compound roof[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1501-1508.
    [5]QIAO Ya-fei, DING Wen-qi, WANG Jun, WANG Chun-bo. Deformation characteristics of deep excavations for metro stations in Wuxi[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 761-766.
    [6]WU Hong-gang, MA Hui-min, BAO Gui-yu. Deformation mechanism of tunnel-slope system in shallow tunnels under unsymmetrical pressure[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 509-514.
    [7]Deformation mechanism of secondary consolidation of natural clays[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [8]Strength and deformation characteristics and critical state of rock fill[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2).
    [9]LI Jianlin, LIU Jie, WANG Lehua. Studies on deformation mechanism and rock mass stability of high slopes of Geheyan Power Station under multiple factors[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1289-1295.
    [10]Miao Tiande, Liu Zhongyu, Ren Jiusheng. Deformation mechanism and constitutive relation of collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 383-387.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return