• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LAN Peng, LI Hai-chao, YE Xin-yu, ZHANG Sheng, SHENG Dai-chao. PINNs algorithm and its application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 586-592. DOI: 10.11779/CJGE202103023
Citation: LAN Peng, LI Hai-chao, YE Xin-yu, ZHANG Sheng, SHENG Dai-chao. PINNs algorithm and its application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 586-592. DOI: 10.11779/CJGE202103023

PINNs algorithm and its application in geotechnical engineering

More Information
  • Received Date: August 05, 2020
  • Available Online: December 04, 2022
  • The physical information neural networks (PINNs) algorithm, a new mesh-free algorithm, uses the automatic differential method to embed the partial differential equation directly into the neural networks so as to realize the intelligent solution of the partial differential equation, which has the advantages of fast convergence speed and high computational accuracy. The PINNs algorithm has a promising application in geotechnical engineering because it can solve the complex partial differential equations (PDEs) and inverse the unknown parameters of the PDEs. In order to verify the feasibility of the PINNs algorithm in geotechnical engineering, the one-dimensional consolidation process with the continuous drainage boundary condition is taken as an example to illustrate the procedures of the PINNs algorithm in terms of both the forward and inverse problems. The results show that the PINNs solution is highly consistent with the analytical one, indicating that the PINNs algorithm can provide an alternative approach for solving the related problems in geotechnical engineering.
  • [1]
    RAISSI M, PERDIKARIS P, KARNIADAKIS G E, et al. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [2]
    LU L, MENG X, MAO Z, et al. DeepXDE: A deep learning library for solving differential equations[J]. ArXiv Preprint ArXiv:1907.04502, 2019.
    [3]
    TARTAKOVSKY A M, MARRERO C O, PERDIKARIS P, et al. Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems[J]. Water Resources Research, 2020, 56(5): e2019WR026731.
    [4]
    MAO Z, JAGTAP A D, KARNIADAKIS G E. Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112789. doi: 10.1016/j.cma.2019.112789
    [5]
    RAISSI M, KARNIADAKIS G E. Hidden physics models: machine learning of nonlinear partial, differential equations[J]. Journal of Computational Physics, 2018, 357: 125-141. doi: 10.1016/j.jcp.2017.11.039
    [6]
    FANG Z, ZHAN J. Deep physical informed neural networks for metamaterial design[J]. IEEE Access, 2019, 8: 24506-24513.
    [7]
    PANG G, LU L, KARNIADAKIS G E, et al. FPINNs: Fractional physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2019, 41(4): A2603-A2626. doi: 10.1137/18M1229845
    [8]
    ABADI M, BARHAM P, CHEN J, et al. TensorFlow: a system for large-scale machine learning[C]//12th USENIX Symposium on Operating Systems Design and Implementation, 2016, Savannah: 265-283.
    [9]
    ADAM P, GROSS S, CHINTALA S, et al. Automatic differentiation in PyTorch[C]//31st Conference on Neural Information Processing Systems(NIPS 2017), 2017, Long Beach.
    [10]
    ROBBINS H, MONRO S. A stochastic approximation method[J]. Annals of Mathematical Stats, 1951, 22(3): 400-407. doi: 10.1214/aoms/1177729586
    [11]
    KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//3rd International Conference on Learning Representations, 2015, San Diego.
    [12]
    BYRD R H, LU P, NOCEDAL J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 1995, 16(5): 1190-1208. doi: 10.1137/0916069
    [13]
    梅国雄, 夏君, 梅岭. 基于不对称连续排水边界的太沙基一维固结方程及其解答[J]. 岩土工程学报, 2011, 33(1): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101006.htm

    MEI Guo-xiong, XIA Jun, MEI Ling. Terzaghi’s one-dimensional consolidation equation and its solution based on asymmetric continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 28-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101006.htm
    [14]
    冯健雪. 连续排水边界条件下成层地基一维固结理论研究[D]. 南宁: 广西大学, 2019.

    FENG Jian-xue. Studies on One-dimensional Consolidation Theory for Layered Soils under Continuous Drainage Boundary Conditions[D]. Nanning: Guangxi University, 2019. (in Chinese)
    [15]
    CHAI J, MATSUNAGA K, SAKAI A, et al. Comparison of vacuum consolidation with surcharge load induced consolidation of a two-layer system[J]. Géotechnique, 2009, 59(7): 637-641. doi: 10.1680/geot.8.T.020
    [16]
    FINN C, ABBEEL P, LEVINE S, et al. Model-agnostic meta-learning for fast adaptation of deep networks[C]//34th International Conference on Machine Learning, 2017, Sydney: 1126-1135.
  • Cited by

    Periodical cited type(7)

    1. 刘志,杨阳. 黄原胶联合微生物加固改善混合砂蓄水特性试验研究. 土木与环境工程学报(中英文). 2025(03): 49-57 .
    2. 梁越,冉裕星,许彬,张鑫强,何慧汝. 细颗粒含量影响渗流侵蚀规律的细观机理研究. 岩土工程学报. 2025(05): 1099-1106 . 本站查看
    3. 高霞,梅雯艳,吴强,崔祥龙. 球度和扁平度对含瓦斯水合物煤体宏细观力学性质影响研究. 中国安全生产科学技术. 2025(05): 86-94 .
    4. 蔡国庆,刁显锋,杨芮,王北辰,高帅,刘韬. 基于CFD-DEM的流-固耦合数值建模方法研究进展. 哈尔滨工业大学学报. 2024(01): 17-32 .
    5. 程建毅,郭晓军,李泳. 泥石流物源土体标度分布参数与粘聚力的关系. 山地学报. 2024(03): 401-410 .
    6. 孙增春,刘汉龙,肖杨. 砂-粉混合料的分数阶塑性本构模型. 岩土工程学报. 2024(08): 1596-1604 . 本站查看
    7. 孙建强. 颗粒形状对黄土干密度与抗剪强度的影响. 黑龙江工程学院学报. 2024(06): 8-15+23 .

    Other cited types(5)

Catalog

    Article views (703) PDF downloads (534) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return