• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Jun-tang, LIU Yuan-xue, ZHENG Ying-ren, BAI Zhun, ZHAO Jiu-bin. Deep mining of big data of tests and constitutive relation of dilative soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 520-529. DOI: 10.11779/CJGE202103015
Citation: YANG Jun-tang, LIU Yuan-xue, ZHENG Ying-ren, BAI Zhun, ZHAO Jiu-bin. Deep mining of big data of tests and constitutive relation of dilative soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 520-529. DOI: 10.11779/CJGE202103015

Deep mining of big data of tests and constitutive relation of dilative soils

More Information
  • Received Date: March 29, 2020
  • Available Online: December 04, 2022
  • Due to the restriction of the traditional constitutive theory and the lack of in-depth studies on the common change laws of the basic mechanical characteristics of soils, most of the constitutive models established at present cannot reflect the actual deformation mechanism of soils well. A big data processing platform of Hadoop and Spark is built. By using the functional network and the AIC criteria, a distributed adaptive auto-regressive algorithm is proposed for deep mining of big data of tests on dilative soils. Based on the big data characteristic relationship of each plastic coefficient, combined with its significant and secondary influence factors, the constitutive model for dilative soils is established based on the theory of generalized plastic mechanics. Through the model verification experiments, the results show that the proposed model is better than the modified Cambridge model and the similar Cambridge model considering the dilatancy, and has strong adaptability to the expression of the mechanical properties of the dilative soils under different stress paths. The big data technology and generalized plastic mechanics are applied to the studies on the constitutive relationship of soils, which effectively breaks through the shackles of the traditional constitutive theory, and is of more extensive theoretical significance. At the same time, it also provides a new idea for the studies on the constitutive relationship of soils.
  • [1]
    杨光华. 土的现代本构理论的发展回顾与展望[J]. 岩土工程学报, 2018, 40(8): 1363-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808002.htm

    YANG Guang-hua. Review and prospect of modern soil constitutive theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1363-1372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808002.htm
    [2]
    ROSCOE K H, SCHOFIELD A, THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240. doi: 10.1680/geot.1963.13.3.211
    [3]
    殷宗泽. 一个土体的双屈服面应力-应变模型[J]. 岩土工程学报, 1988(4): 64-71. doi: 10.3321/j.issn:1000-4548.1988.04.007

    YIN Zong-ze. A double yield surface stress-strain model of soil[J]. Chinese Journal of Geotechnical Engineering, 1988(4): 64-71. (in Chinese) doi: 10.3321/j.issn:1000-4548.1988.04.007
    [4]
    李广信. 土的清华弹塑性模型及其发展[J]. 岩土工程学报, 2006, 25(1): 1-10. doi: 10.3321/j.issn:1000-4548.2006.01.001

    LI Guang-xin. Tsinghua elastoplastic model of soil and its development[J]. Chinese Journal of Geotechnical Engineering, 2006, 25(1): 1-10. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.01.001
    [5]
    姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151. doi: 10.3321/j.issn:1000-6915.2009.10.023

    YAO Yang-ping, HOU Wei, LUO Ting. Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.10.023
    [6]
    刘元雪, 郑颖人. 高等岩土塑性力学[M]. 北京: 科学出版社, 2019.

    LIU Yuan-xue, ZHENG Ying-ren. Plastic Mechanics of Geomaterial[M]. Beijing: Science Press, 2019. (in Chinese)
    [7]
    陈云敏, 马鹏程, 唐耀. 土体的本构模型和超重力物理模拟[J]. 力学学报, 2020, 52(4): 901-915. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202004001.htm

    CHEN Yun-min, MA Peng-cheng, TANG Yao. Constitutive models and hypergravity physical simulation of soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 901-915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202004001.htm
    [8]
    赵成刚, 张雪东, 郭漩. 土的本构方程与热力学力学[J]. 力学进展, 2006, 36(4): 611-618. doi: 10.3321/j.issn:1000-0992.2006.04.012

    ZHAO Cheng-gang, ZHANG Xue-dong, GUO Xuan. Constitutive equation and thermodynamics of soil[J]. Advances in Mechanics, 2006, 36(4): 611-618. (in Chinese) doi: 10.3321/j.issn:1000-0992.2006.04.012
    [9]
    CHAO S, FENG Y. Data analytics and machine learning for smart process manufacturing: recent advances and perspectives in the big data era[J]. Engineering, 2019, 15(6): 231-239.
    [10]
    曾静, 王靖涛. 土的本构关系的数值建模方法[J]. 岩石力学与工程学报, 2002(增刊2): 2336-2340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2002S2010.htm

    ZENG Jing, WANG Jing-tao. Numerical modeling method of soil constitutive relation[J]. Journal of Rock Mechanics and Engineering, 2002(S2): 2336-2340. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2002S2010.htm
    [11]
    BANIMAHD A, YASROBI S S, WOODWARD P K. Artificial neural network for stress-strain behavior of sandy soils: Knowledge based verification[J]. Computers and Geotechnics, 2005, 32(5): 377-386. doi: 10.1016/j.compgeo.2005.06.002
    [12]
    ZHOU W H, TAN F, YUEN K V. Model updating and uncertainty analysis for creep behavior of soft soil[J]. Computers and Geotechnics, 2018, 100(12): 135-143.
    [13]
    BONTE C, VERCAUTEREN F. Privacy-preserving logistic regression training[J]. BMC Medical Genomics, 2018, 11(4): 86-93.
    [14]
    ALI K, KAMRAN M. Design of a vertical search engine for synchrotron data: a big data approach using Hadoop ecosystem[J]. SN Applied Sciences, 2019, 1(12): 341-347.
    [15]
    Mohamed SUAD, Mutaher FADL. Intrusion detection model using machine learning algorithm on Big Data environment[J]. Journal of Big Data, 2018, 5(1): 1-12. doi: 10.1186/s40537-017-0110-7
    [16]
    周永权, 赵斌, 焦李成. 基于泛函网络的多维函数逼近理论及学习算法[J]. 系统工程与电子技术, 2005, 27(5): 906-909. doi: 10.3321/j.issn:1001-506X.2005.05.038

    ZHOU Yong-quan, ZHAO Bin, JIAO Li-chen. Theory and learning algorithm of multi-dimensional function approximation based on functional networks[J]. Systems Engineering and Electronics, 2005, 27(5): 906-909. (in Chinese) doi: 10.3321/j.issn:1001-506X.2005.05.038
    [17]
    肖倩, 周永权, 陈振. 基函数可递归的泛函神经元网络学习算法[J]. 计算机科学, 2013, 40(1): 203-207. doi: 10.3969/j.issn.1002-137X.2013.01.047

    XIAO Qian, ZHOU Yong-quan, CHEN Zhen. Functional network learning algorithm with recursively base functions[J]. Computer Science, 2013, 2013, 40(1): 203-207. (in Chinese) doi: 10.3969/j.issn.1002-137X.2013.01.047
    [18]
    SATOSHI K, YUTA Y. AIC for the group Lasso in generalized linear models[J]. Japanese Journal of Statistics and Data Science, 2019, 2(2): 545-558. doi: 10.1007/s42081-019-00052-0
    [19]
    RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334: 1518-1524. doi: 10.1126/science.1205438
    [20]
    杨光华, 温勇, 钟志辉. 基于广义位势理论的类剑桥模型[J]. 岩土力学, 2013, 34(6): 1521-1528. doi: 10.16285/j.rsm.2013.06.002

    YANG Guang-hua, WEN Yong, ZHONG Zhi-hui. Similar cam-clay model based on generalized potential theory[J]. Rock and Soil Mechanics, 2013, 34(6): 1521-1528. (in Chinese) doi: 10.16285/j.rsm.2013.06.002
    [21]
    盛佳韧. 上海黏土力学特性综合试验研究及本构模拟[D]. 上海: 上海交通大学, 2012.

    SHENG Jia-ren. Comprehensive Experimental Study and Constitutive Simulation on mechanical Properties of Shanghai Clay[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese)

Catalog

    Article views (279) PDF downloads (160) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return