• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIAO Peng, LIU Han-long, ZHANG Yu, JIANG Xiang, LI Chi, CHU Jian, XIAO Yang. Dynamic strength of temperature-controlled MICP-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 511-519. DOI: 10.11779/CJGE202103014
Citation: XIAO Peng, LIU Han-long, ZHANG Yu, JIANG Xiang, LI Chi, CHU Jian, XIAO Yang. Dynamic strength of temperature-controlled MICP-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 511-519. DOI: 10.11779/CJGE202103014

Dynamic strength of temperature-controlled MICP-treated calcareous sand

More Information
  • Received Date: April 16, 2020
  • Available Online: December 04, 2022
  • A series of undrained cyclic triaxial tests are carried out for calcareous sand treated by temperature-controlled MICP (microbially induced calcium carbonate precipitation) technology, and the dynamic strength characteristics of MICP-treated calcareous sand are thoroughly investigated. The in-depth discussion is conducted for the effects of biocementation level, relative density and effective confining pressure on dynamic strength and liquefaction characteristics. The dynamic and liquefaction characteristics of loose calcareous sand gradually change from flow slide to cyclic mobility after MICP treatment. Compared with the untreated medium dense calcareous sand, the MICP-treated medium dense calcareous sand shows more obvious characteristics of cyclic mobility. An increase in biocementation level, relative density and effective confining pressure leads to an increase in the dynamic strength of MICP-treated calcareous sand in different extents. Based on the optimized empirical formula of dynamic strength for MICP-treated calcareous sand, a uniform dynamic strength criterion is further established for MICP-treated calcareous sand. The unified dynamic strength criterion in this study will provide an important theoretical basis for the development and application of MICP treatment technology in the construction of islands and reefs in South China Sea.
  • [1]
    SALEHZADEH H, PROCTER D C, MERRIFIELD C M. Medium dense non-cemented carbonate sand under reversed cyclic loading[J]. International Journal of Civil Engineering, 2006, 2006, 4(1): 54-63.
    [2]
    SINGH S C, CARTON H, TAPPONNIER P, et al. Seismic evidence for broken oceanic crust in the 2004 Sumatra earthquake epicentral region[J]. Nature Geoscience, 2008, 1(11): 777-781. doi: 10.1038/ngeo336
    [3]
    WANG X Z, JIAO Y Y, WANG R, et al. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea[J]. Engineering Geology, 2011, 12(1/2/3/4), 40-47.
    [4]
    HYODO M, HYDE A F L, ARAMAKI N. Liquefaction of crushable soils[J]. Géotechnique, 1998, 48(4): 527-543. doi: 10.1680/geot.1998.48.4.527
    [5]
    SHARMA S S, ISMAIL M A. Monotonic and cyclicbehavior of two calcareous soils of different origins[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(12): 1581-1591. doi: 10.1061/(ASCE)1090-0241(2006)132:12(1581)
    [6]
    XIAO Y, LIU H, XIAO P, et al. Fractal crushing of carbonate sands under impact loading[J]. Géotechnique Letters, 2016, 6(3): 199-204. doi: 10.1680/jgele.16.00056
    [7]
    XIAO Y, WANG L, JIANG X, et al. Acoustic emission and force drop in grain crushing of carbonate sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019057. doi: 10.1061/(ASCE)GT.1943-5606.0002141
    [8]
    QADIMI A, COOP M R. The undrained cyclic behaviour of a carbonate sand[J]. Géotechnique, 2007, 57(9): 739-750. doi: 10.1680/geot.2007.57.9.739
    [9]
    PORCINO D, CARIDI G, GHIONNA V N. Undrained monotonic and cyclic simple shear behaviour of carbonate sand[J]. Géotechnique, 2008, 58(8): 635-644. doi: 10.1680/geot.2007.00036
    [10]
    单华刚, 汪稔. 钙质砂中的桩基工程研究进展述评[J]. 岩土力学, 2000, 21(3): 299-304. doi: 10.3969/j.issn.1000-7598.2000.03.027

    SHAN Hua-gang, WANG Ren. Development of study on pile in calcareous sand[J]. Rock and Soil Mechanics, 2000, 21(3): 299-304. (in Chinese) doi: 10.3969/j.issn.1000-7598.2000.03.027
    [11]
    STUEDLEIN A W, GIANELLA T N, CANIVAN G. Densification of granular soils using conventional and drained timber displacement piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(12): 04016075. doi: 10.1061/(ASCE)GT.1943-5606.0001554
    [12]
    XIAO Y, HE X, EVANS TM, et al. Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019048. doi: 10.1061/(ASCE)GT.1943-5606.0002108
    [13]
    MA G, HE X, JIANG X, et al. Strength and permeability of bentonite-assisted biocemented coarse sand[J]. Canadian Geotechnical Journal, in press.
    [14]
    XIAO Y, STUEDLEIN A, PAN Z, et al. Toe bearing capacity of precast concrete piles through biogrouting improvement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 06020026. doi: 10.1061/(ASCE)GT.1943-5606.0002404
    [15]
    XIAO Y, CHEN H, STUEDLEIN ARMIN W, et al. Restraint of particle breakage by biotreatment method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020123. doi: 10.1061/(ASCE)GT.1943-5606.0002384
    [16]
    XIAO Y, STUEDLEIN A W, RAN J, et al. Effect of particle shape on strength and stiffness of biocemented glass beads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 06019016. doi: 10.1061/(ASCE)GT.1943-5606.0002165
    [17]
    刘汉龙, 马国梁, 赵常, 等. 微生物加固钙质砂的宏微观力学机理[J]. 土木与环境工程学报(中英文), 2020, 42(4): 205-206. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202004024.htm

    LIU Hang-long, MA Guo-liang, ZHAO Chang et al. Macro-and micro-mechanical regime of biotreated calcareous sand[J]. Journal of Civil and Environmental Engineering, 2020, 42(4): 205-206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202004024.htm
    [18]
    刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm

    LIU Hang-long, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
    [19]
    LIU H L, DENG A, CHU J. Effect of different mixing ratios of polystyrene pre-puff beads and cement on the mechanical behaviour of lightweight fill[J]. Geotextiles and Geomembranes, 2006, 24(6): 331-338. doi: 10.1016/j.geotexmem.2006.05.002
    [20]
    CONSOLI N C, FOPPA D, FESTUGATO L, et al. Key parameters for strength control of artificially cemented soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(2): 197-205. doi: 10.1061/(ASCE)1090-0241(2007)133:2(197)
    [21]
    方祥位, 申春妮, 楚剑, 等. 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36(10): 2773-2779. doi: 10.16285/j.rsm.2015.10.005

    FANG Xiang-wei, SHEN Chun-ni, CHU Jian, et al. An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36(10): 2773-2779. (in Chinese) doi: 10.16285/j.rsm.2015.10.005
    [22]
    LIU L, LIU H, STUEDLEIN A W, et al. Strength, Stiffness, and microstructure characteristics of biocemented calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(10): 1502-1513. doi: 10.1139/cgj-2018-0007
    [23]
    XIAO P, LIU H, XIAO Y, et al. Liquefaction resistance of bio-cemented calcareous sand[J]. Soil Dynamics and Earthquake Engineering, 2018, 107: 9-19. doi: 10.1016/j.soildyn.2018.01.008
    [24]
    XIAO P, LIU H, STUEDLEIN A W, et al. Effect of relative density and bio-cementation on the cyclic response of calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 1849-1862. doi: 10.1139/cgj-2018-0573
    [25]
    土工试验规程:SL237—1999[S]. 1999.

    Specification of Soil Test: SL237—1999[S]. 1999. (in Chinese)
    [26]
    刘汉龙, 张宇, 郭伟, 等. 微生物加固钙质砂动孔压模型研究[J]. 岩石力学与工程学报, 2021, 40(4): 790-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104012.htm

    LIU Hang-long, ZHANG Yu, GUO Wei, et al. Predictions of dynamic pore water pressure for MICP-treated calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 790-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104012.htm
    [27]
    WANG Y, LIU H, ZHANG Z, et al. Study on low-strength biocemented sands using a temperature-controlled MICP (Microbially Induced Calcite Precipitation) method[C]//5th GeoChina International Conference, 2019, Hangzhou.
    [28]
    SZE H Y, YANG J. Failure modes of sand in undrained cyclic loading: impact of sample preparation[J]. Geotechnical and Geoenvironmental Engineering, 2014, 140(1): 152-169. doi: 10.1061/(ASCE)GT.1943-5606.0000971
    [29]
    PORCINO D, MARCIANÒ V, GRANATA R. Undrained cyclic response of a silicate-grouted sand for liquefaction mitigation purposes[J]. Geomechanics and Geoengineering, 2011, 6(3): 155-170. doi: 10.1080/17486025.2011.560287
    [30]
    PORCINO D, MARCIANÒ V, GRANATA R. Cyclic liquefaction behaviour of a moderately cemented grouted sand under repeated loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 79: 36-46. doi: 10.1016/j.soildyn.2015.08.006

Catalog

    Article views (362) PDF downloads (284) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return