Citation: | XIAO Peng, LIU Han-long, ZHANG Yu, JIANG Xiang, LI Chi, CHU Jian, XIAO Yang. Dynamic strength of temperature-controlled MICP-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 511-519. DOI: 10.11779/CJGE202103014 |
[1] |
SALEHZADEH H, PROCTER D C, MERRIFIELD C M. Medium dense non-cemented carbonate sand under reversed cyclic loading[J]. International Journal of Civil Engineering, 2006, 2006, 4(1): 54-63.
|
[2] |
SINGH S C, CARTON H, TAPPONNIER P, et al. Seismic evidence for broken oceanic crust in the 2004 Sumatra earthquake epicentral region[J]. Nature Geoscience, 2008, 1(11): 777-781. doi: 10.1038/ngeo336
|
[3] |
WANG X Z, JIAO Y Y, WANG R, et al. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea[J]. Engineering Geology, 2011, 12(1/2/3/4), 40-47.
|
[4] |
HYODO M, HYDE A F L, ARAMAKI N. Liquefaction of crushable soils[J]. Géotechnique, 1998, 48(4): 527-543. doi: 10.1680/geot.1998.48.4.527
|
[5] |
SHARMA S S, ISMAIL M A. Monotonic and cyclicbehavior of two calcareous soils of different origins[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(12): 1581-1591. doi: 10.1061/(ASCE)1090-0241(2006)132:12(1581)
|
[6] |
XIAO Y, LIU H, XIAO P, et al. Fractal crushing of carbonate sands under impact loading[J]. Géotechnique Letters, 2016, 6(3): 199-204. doi: 10.1680/jgele.16.00056
|
[7] |
XIAO Y, WANG L, JIANG X, et al. Acoustic emission and force drop in grain crushing of carbonate sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019057. doi: 10.1061/(ASCE)GT.1943-5606.0002141
|
[8] |
QADIMI A, COOP M R. The undrained cyclic behaviour of a carbonate sand[J]. Géotechnique, 2007, 57(9): 739-750. doi: 10.1680/geot.2007.57.9.739
|
[9] |
PORCINO D, CARIDI G, GHIONNA V N. Undrained monotonic and cyclic simple shear behaviour of carbonate sand[J]. Géotechnique, 2008, 58(8): 635-644. doi: 10.1680/geot.2007.00036
|
[10] |
单华刚, 汪稔. 钙质砂中的桩基工程研究进展述评[J]. 岩土力学, 2000, 21(3): 299-304. doi: 10.3969/j.issn.1000-7598.2000.03.027
SHAN Hua-gang, WANG Ren. Development of study on pile in calcareous sand[J]. Rock and Soil Mechanics, 2000, 21(3): 299-304. (in Chinese) doi: 10.3969/j.issn.1000-7598.2000.03.027
|
[11] |
STUEDLEIN A W, GIANELLA T N, CANIVAN G. Densification of granular soils using conventional and drained timber displacement piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(12): 04016075. doi: 10.1061/(ASCE)GT.1943-5606.0001554
|
[12] |
XIAO Y, HE X, EVANS TM, et al. Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019048. doi: 10.1061/(ASCE)GT.1943-5606.0002108
|
[13] |
MA G, HE X, JIANG X, et al. Strength and permeability of bentonite-assisted biocemented coarse sand[J]. Canadian Geotechnical Journal, in press.
|
[14] |
XIAO Y, STUEDLEIN A, PAN Z, et al. Toe bearing capacity of precast concrete piles through biogrouting improvement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 06020026. doi: 10.1061/(ASCE)GT.1943-5606.0002404
|
[15] |
XIAO Y, CHEN H, STUEDLEIN ARMIN W, et al. Restraint of particle breakage by biotreatment method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020123. doi: 10.1061/(ASCE)GT.1943-5606.0002384
|
[16] |
XIAO Y, STUEDLEIN A W, RAN J, et al. Effect of particle shape on strength and stiffness of biocemented glass beads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 06019016. doi: 10.1061/(ASCE)GT.1943-5606.0002165
|
[17] |
刘汉龙, 马国梁, 赵常, 等. 微生物加固钙质砂的宏微观力学机理[J]. 土木与环境工程学报(中英文), 2020, 42(4): 205-206. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202004024.htm
LIU Hang-long, MA Guo-liang, ZHAO Chang et al. Macro-and micro-mechanical regime of biotreated calcareous sand[J]. Journal of Civil and Environmental Engineering, 2020, 42(4): 205-206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202004024.htm
|
[18] |
刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
LIU Hang-long, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
|
[19] |
LIU H L, DENG A, CHU J. Effect of different mixing ratios of polystyrene pre-puff beads and cement on the mechanical behaviour of lightweight fill[J]. Geotextiles and Geomembranes, 2006, 24(6): 331-338. doi: 10.1016/j.geotexmem.2006.05.002
|
[20] |
CONSOLI N C, FOPPA D, FESTUGATO L, et al. Key parameters for strength control of artificially cemented soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(2): 197-205. doi: 10.1061/(ASCE)1090-0241(2007)133:2(197)
|
[21] |
方祥位, 申春妮, 楚剑, 等. 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36(10): 2773-2779. doi: 10.16285/j.rsm.2015.10.005
FANG Xiang-wei, SHEN Chun-ni, CHU Jian, et al. An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36(10): 2773-2779. (in Chinese) doi: 10.16285/j.rsm.2015.10.005
|
[22] |
LIU L, LIU H, STUEDLEIN A W, et al. Strength, Stiffness, and microstructure characteristics of biocemented calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(10): 1502-1513. doi: 10.1139/cgj-2018-0007
|
[23] |
XIAO P, LIU H, XIAO Y, et al. Liquefaction resistance of bio-cemented calcareous sand[J]. Soil Dynamics and Earthquake Engineering, 2018, 107: 9-19. doi: 10.1016/j.soildyn.2018.01.008
|
[24] |
XIAO P, LIU H, STUEDLEIN A W, et al. Effect of relative density and bio-cementation on the cyclic response of calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 1849-1862. doi: 10.1139/cgj-2018-0573
|
[25] |
土工试验规程:SL237—1999[S]. 1999.
Specification of Soil Test: SL237—1999[S]. 1999. (in Chinese)
|
[26] |
刘汉龙, 张宇, 郭伟, 等. 微生物加固钙质砂动孔压模型研究[J]. 岩石力学与工程学报, 2021, 40(4): 790-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104012.htm
LIU Hang-long, ZHANG Yu, GUO Wei, et al. Predictions of dynamic pore water pressure for MICP-treated calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 790-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104012.htm
|
[27] |
WANG Y, LIU H, ZHANG Z, et al. Study on low-strength biocemented sands using a temperature-controlled MICP (Microbially Induced Calcite Precipitation) method[C]//5th GeoChina International Conference, 2019, Hangzhou.
|
[28] |
SZE H Y, YANG J. Failure modes of sand in undrained cyclic loading: impact of sample preparation[J]. Geotechnical and Geoenvironmental Engineering, 2014, 140(1): 152-169. doi: 10.1061/(ASCE)GT.1943-5606.0000971
|
[29] |
PORCINO D, MARCIANÒ V, GRANATA R. Undrained cyclic response of a silicate-grouted sand for liquefaction mitigation purposes[J]. Geomechanics and Geoengineering, 2011, 6(3): 155-170. doi: 10.1080/17486025.2011.560287
|
[30] |
PORCINO D, MARCIANÒ V, GRANATA R. Cyclic liquefaction behaviour of a moderately cemented grouted sand under repeated loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 79: 36-46. doi: 10.1016/j.soildyn.2015.08.006
|