• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Fu-guang, NIE Zhuo-chen, CHEN Meng-fei, FENG Huai-ping. DEM analysis of macro- and micro-mechanical behaviors of cemented sand subjected to undrained cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 456-464. DOI: 10.11779/CJGE202103008
Citation: ZHANG Fu-guang, NIE Zhuo-chen, CHEN Meng-fei, FENG Huai-ping. DEM analysis of macro- and micro-mechanical behaviors of cemented sand subjected to undrained cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 456-464. DOI: 10.11779/CJGE202103008

DEM analysis of macro- and micro-mechanical behaviors of cemented sand subjected to undrained cyclic loading

More Information
  • Received Date: June 18, 2020
  • Available Online: December 04, 2022
  • Natural or artificial cementation formed between sand particles can strengthen the liquefaction resistance of sand. Hence, it is significant to investigate the dynamic behavior of cemented sand at the macro- and micro-scale. By introducing an existing three-dimensional (3-D) complete bond contact model into a 3-D distinct element method (DEM) code, a series of undrained cyclic triaxial shear tests on the cemented sand are simulated, where the effects of cementation and cyclic stress ratio are studied. The results show that the inter-particle cementation can restrain the development of axial strain and pore pressure, and increase the liquefaction resistance. In addition, there is an exponential relationship between the cyclic stress ratio and the number of cycles to trigger the initial liquefaction. These findings confirm the reliability of the DEM simulation in this study. When the value of cyclic stress ratio is relatively small, within the cemented specimen with given degree of cementation, a very small amount of bonds break, the mechanical coordination number remains almost unchanged, and the input work is mainly used to increase the elastic energy at the particle contacts and bond contacts. For the cemented sand before the initial liquefaction, as the cyclic stress ratio increases, the inter-particle bonds break more intensely, the mechanical coordination number declines faster. Likewise, as the cyclic stress ratio increases, the elastic energy at the particle and bond contacts tends to zero faster, and the dissipated energy reaches the maximum value in a shorter period of time. In addition, the contact normal orientation tends to be isotropic more rapidly.
  • [1]
    MASSARSCH K R, FELLENIUS B H. Vibratory compaction of coarse-grained soils[J]. Canadian Geotechnical Journal, 2002, 39(3): 695-709. doi: 10.1139/t02-006
    [2]
    WANG Y H, LEUNG S C. Characterization of cemented sand by experimental and numerical investigations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(7): 992-1004. doi: 10.1061/(ASCE)1090-0241(2008)134:7(992)
    [3]
    PORCINO D, MARCIANÒ V, GRANATA R. Static and dynamic properties of a lightly cemented silicate-grouted sand[J]. Canadian Geotechnical Journal, 2012, 49(10): 1117-1133. doi: 10.1139/t2012-069
    [4]
    DEJONG J T, SOGA K, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4): 287-301. doi: 10.1680/geot.SIP13.P.017
    [5]
    刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm

    LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
    [6]
    SANTAMARINA J C, KLEIN A, FAM M A. Soils and Waves[M]. New York: John Wiley and Sons, 2001: 25-54.
    [7]
    MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. 3rd ed. New York: John Wiley and Sons, 2005: 5-33.
    [8]
    FRYDMAN S, HENDRON D, HORN H, et al. Liquefaction study of cemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1980, 106(GT3): 275-297.
    [9]
    CLOUGH G W, IWABUCHI J, RAD N S, et al. Influence of cementation on liquefaction of sands[J]. Journal of Geotechnical Engineering, 1989, 115(8): 1102-1117. doi: 10.1061/(ASCE)0733-9410(1989)115:8(1102)
    [10]
    QADIMI A, COOP M R. The undrained cyclic behavior of a carbonate sand[J]. Géotechnique, 2007, 57(9): 739-750. doi: 10.1680/geot.2007.57.9.739
    [11]
    PORCINO D, MARCIANÒ V, GRANATA R. Cyclic liquefaction behaviour of a moderately cemented grouted sand under repeated loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 79(Part A): 36-46.
    [12]
    VRANNA A, TIKA T. Undrained monotonic and cyclic response of weakly cemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(5): 04020018. doi: 10.1061/(ASCE)GT.1943-5606.0002246
    [13]
    RASOULI H, FATAHI B, NIMBALKAR S. Liquefaction and post-liquefaction assessment of lightly cemented sands[J]. Canadian Geotechnical Journal, 2020, 57: 173-188. doi: 10.1139/cgj-2018-0833
    [14]
    CUNDALL P A, STRACK O D L. Discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
    [15]
    蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm

    JIANG Ming-jing. New paradigm for modern soil mechanics: geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902002.htm
    [16]
    DE BONO J P, MCDOWELL G R. Discrete element modelling of one-dimensional compression of cemented sand[J]. Granular Matter, 2014, 16(1): 79-90. doi: 10.1007/s10035-013-0466-0
    [17]
    ZHANG F G, JIANG M J. Do the normal compression lines of cemented and uncemented geomaterials run parallel or converge to each other after yielding?[J]. European Journal of Environmental and Civil Engineering, 2021, 25(2): 368-386. doi: 10.1080/19648189.2018.1531788
    [18]
    WANG Y H, LEUNG S C. A particulate-scale investigation of cemented sand behavior[J]. Canadian Geotechnical Journal, 2008, 45(1): 29-44. doi: 10.1139/T07-070
    [19]
    JIANG M J, ZHANG F G, THORNTON C. A simple three-dimensional distinct element modeling of the mechanical behavior of bonded sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(16): 1791-1820. doi: 10.1002/nag.2371
    [20]
    张伏光, 蒋明镜. 胶结砂土强度特性的真三轴试验离散元分析[J]. 岩石力学与工程学报, 2018, 37(6): 1530-1539. doi: 10.13722/j.cnki.jrme.2017.1464

    ZHANG Fu-guang, JIANG Ming-jing. Analysis of the strength behaviour of cemented sands in true triaxial test with distinct element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1530-1539. (in Chinese) doi: 10.13722/j.cnki.jrme.2017.1464
    [21]
    蒋明镜, 孙若晗, 李涛, 等. 微生物处理砂土不排水循环三轴剪切 CFD-DEM模拟[J]. 岩土工程学报, 2020, 42(1): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001005.htm

    JIANG Ming-jing, SUN Ruo-han, LI Tao, et al. CFD-DEM simulation of microbially treated sands under undrained consolidated cyclic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 20-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001005.htm
    [22]
    SHEN Z F, JIANG M J, THORNTON C. DEM simulation of bonded granular material: Part I contact model and application to cemented sand[J]. Computers and Geotechnics, 2016, 75: 192-209. doi: 10.1016/j.compgeo.2016.02.007
    [23]
    JIANG M J, ZHANG A, LI T. Distinct element analysis of the microstructure evolution in granular soils under cyclic loading[J]. Granular Matter, 2019, 21: 39. doi: 10.1007/s10035-019-0892-8
    [24]
    JIANG M J, KONRAD J, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8
    [25]
    JIANG M J, SUN Y G, LI LQ, et al. Contact behavior of idealized granules bonded in two different interparticle distances: an experimental investigation[J]. Mechanics of Materials, 2012, 55: 1-15. doi: 10.1016/j.mechmat.2012.07.002
    [26]
    申志福. 深海能源土力学特性三维多尺度数值模拟[D]. 上海: 同济大学, 2016.

    SHEN Zhi-fu. Three-Dimensional Multi-Scale Numerical Simulations of the Mechanical Behavior of Methane Hydrate Bearing Sediments[D]. Shanghai: Tongji University, 2016. (in Chinese)
    [27]
    KUHN M R, RENKEN H E, MIXSELL A D, et al. Investigation of cyclic liquefaction with discrete element simulations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 04014075. doi: 10.1061/(ASCE)GT.1943-5606.0001181
    [28]
    THORNTON C. Numerical simulations of deviatoric shear deformation of granular media[J]. Géotechnique, 2000, 50(1): 43-53. doi: 10.1680/geot.2000.50.1.43
    [29]
    BOLTON M D, NAKATA Y, CHENG Y P. Micro- and macro-mechanical behaviour of DEM crushable materials[J]. Géotechnique, 2008, 58(6): 471-480. doi: 10.1680/geot.2008.58.6.471
    [30]
    SAZZAD M M, SUZUKI K. Density dependent macro-micro behavior of granular materials in general triaxial loading for varying intermediate principal stress using DEM[J]. Granular Matter, 2013, 15(5): 583-593. doi: 10.1007/s10035-013-0422-z
    [31]
    MARTIN E L, THORNTON C, UTILI S. Micromechanical investigation of liquefaction of granular media by cyclic 3D DEM tests[J]. Géotechnique, 2020, 70(10): 906-915. doi: 10.1680/jgeot.18.P.267

Catalog

    Article views (447) PDF downloads (362) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return