• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xin-rong, XU Bin, HUANG Jun-hui, LIN Guang-yi, ZHOU Xiao-han, WANG Ji-wen, XIONG Fei. Macro-meso shear mechanical behaviors of coalescent rock joints with different morphologies[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 406-415. DOI: 10.11779/CJGE202103002
Citation: LIU Xin-rong, XU Bin, HUANG Jun-hui, LIN Guang-yi, ZHOU Xiao-han, WANG Ji-wen, XIONG Fei. Macro-meso shear mechanical behaviors of coalescent rock joints with different morphologies[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 406-415. DOI: 10.11779/CJGE202103002

Macro-meso shear mechanical behaviors of coalescent rock joints with different morphologies

More Information
  • Received Date: June 14, 2020
  • Available Online: December 04, 2022
  • To investigate the macro-meso shear mechanical behaviors of coalescent saw-tooth (wavy) rock joints considering the impact of the first-order (second-order) asperities, the laboratory direct shear tests and PFC2D numerical simulations are conducted. The results indicate that: (1) The macro-damage mass increases, the peak shear stress (displacement) approximately linearly increases (decreases) and the stress drop increases first then decreases as the first-order undulant angle increases under the same normal stress. The macro-damage increases, the peak shear stress (displacement) approximately linearly increases, and the stress drop increases (saw-tooth) or increases first then decreases (wavy) as the normal stress increases under the same first-order undulant angle. (2) There are five stages in the macro-meso damage evolution process, i.e., initial nonlinear deformation (compacting effect), approximately linear-elastic deformation (climbing effect), nonlinear deformation due to compression-shear fracture (climbing-gnawing effect), plastic deformation due to a drop in the brittle stress (gnawing effect) and ideal plastic flow deformation (sliding effect). (3) The macro-meso shear failure modes include compacting-climbing failure, climbing-gnawing failure and gnawing-sliding failure. The curves of the meso-damage crack quantity (energy) include three stages, i.e., a slight, steep and slow increase in the initial, middle and later stages, respectively, and the meso-damage particles are distributed near the rock joints in an approximately "trapezoidal-shape". (4) According to the limit equilibrium and strength reduction methods, the rationality of shear strength estimation formulas for the rock joints is verified through the stability analysis of rock slope examples.
  • [1]
    LIU X R, KOU M M, LU Y M, et al. An experimental investigation on the shear mechanism of fatigue damage in rock joints under pre-peak cyclic loading condition[J]. International Journal of Fatigue, 2018, 106: 175-184. doi: 10.1016/j.ijfatigue.2017.10.007
    [2]
    刘永权. 频发微震下库区顺层岩质边坡累积损伤演化机理及稳定性研究[D]. 重庆: 重庆大学, 2017.

    LIU Yong-quan. Study on Cumulative Damage Evolution Mechanism and Stability of Bedding Rock Slope in Reservoir Area Under Frequent Microseismic[D]. Chongqing: Chongqing University, 2017. (in Chinese)
    [3]
    黄润秋. 岩石高边坡稳定性工程地质分析[M]. 北京: 科学出版社, 2012.

    HUANG Run-qiu. Engineering Geology for High Rock Slopes[M]. Beijing: Science Press, 2012. (in Chinese)
    [4]
    PATTON F D. Multiple models of shear failure in rock[C]//Proceedings of the 1st Congress of the International Society of Rock Mechanics (ISRM), 1966, Portugal: 509-513.
    [5]
    BARTON N. Review of a new shear strength criterion for rock joints[J]. Engineering Geology, 1973, 7: 287-332. doi: 10.1016/0013-7952(73)90013-6
    [6]
    HOEK E, BRAY J. Rock Slope Engineering[M]. 3rd ed. London: Institution of Mining and Metallurgy, 1981.
    [7]
    BANDIS S C, LUMSDEN A C, BARTON N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983, 20(6): 249-268.
    [8]
    SEIDEL J P, HABERFIELD C M. The application of energy principles to the determination of the sliding resistance of rock joints[J]. Rock Mechannics and Rock Engineering, 1995, 28(4): 211-226. doi: 10.1007/BF01020227
    [9]
    朱小明, 李海波, 刘博, 等. 含一阶和二阶起伏体节理剪切强度的试验研究[J]. 岩石力学与工程学报, 2011, 30(9): 1810-1818. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109011.htm

    ZHU Xiao-ming, LI Hai-bo, LIU Bo, et al. Experimental study of shear strength of joints with first-order and second-order asperities[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1810-1818. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109011.htm
    [10]
    周辉, 程光坦, 朱勇, 等. 大理岩规则齿形结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(3): 852-860. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903004.htm

    ZHOU Hui, CHENG Guang-tan, ZHU Yong, et al. Experimental study of shear deformation characteristics of marble dentate joints[J]. Rock and Soil Mechanics, 2019, 40(3): 852-860. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903004.htm
    [11]
    LIU X R, LIU Y Q, LU Y M, et al. Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints[J]. Structural Engineering and Mechanics, 2020, 74(3): 407-423.
    [12]
    黄达, 黄润秋, 雷鹏. 贯通型锯齿状岩体结构面剪切变形及强度特征[J]. 煤炭学报, 2014, 39(7): 1229-1237. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201407006.htm

    HUANG Da, HUANG Run-qiu, LEI Peng. Shear deformation and strength of through-going saw-tooth rock discontinuity[J]. Journal of China Coal Society, 2014, 39(7): 1229-1237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201407006.htm
    [13]
    王刚, 张学朋, 蒋宇静, 等. 基于颗粒离散元法的岩石节理面剪切破坏细观机理[J]. 中南大学学报(自然科学版), 2015, 46(4): 1442-1453. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201504035.htm

    WANG Gang, ZHANG Xue-peng, JIANG Yu-jing, et al. Meso-mechanism research on shear failure of rock joint based on particle discrete element method[J]. Journal of Central South University (Science and Technology), 2015, 46(4): 1442-1453. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201504035.htm
    [14]
    刘新荣, 许彬, 刘永权, 等. 频发微小地震下顺层岩质边坡累积损伤及稳定性分析[J]. 岩土工程学报, 2020, 42(4): 632-641. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004008.htm

    LIU Xin-rong, XU Bin, LIU Yong-quan, et al. Cumulative damage and stability analysis of bedding rock slope under frequent microseisms[J]. Chinese Journal of Geotechnicale Engineering, 2020, 42(4): 632-641. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004008.htm
    [15]
    雷鹏. 硬性接触型岩体结构面剪切特性及边坡稳定性分析[D]. 重庆: 重庆大学, 2014.

    LEI Peng. Analysis on Shear Properties of Through Discontinuity and Stability of Slope with Through Discontinuity[D]. Chongqing: Chongqing University, 2014. (in Chinese)
    [16]
    MURALHA J, GRASSELLI G, TATONE B, et al. ISRM suggested method for laboratory determination of the shear strength of rock joints: revised version[J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 291-302.
    [17]
    YOON J. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 871-889.
    [18]
    CHENG Y M, LANSIVAARA T, WEI W B. Two- dimensional slope stability analysis by limit equilibrium and strength reduction methods[J]. Computer and Geotechnics, 2007, 34(3): 137-150.
  • Cited by

    Periodical cited type(4)

    1. 宋威,王淑敏,高磊,赵岩. 高速铁路桥梁钻孔灌注桩承载特性影响因素研究. 高速铁路技术. 2025(01): 14-20+28 .
    2. 汪思源,张福友,梅国雄,肖良,巫志文. 岩溶区布袋灌注桩承载特性研究. 山东交通科技. 2025(01): 5-10 .
    3. 魏纲,王新,崔允亮,刁红国. 超长大直径变截面钢管复合桩竖向承载力算法. 地下空间与工程学报. 2022(03): 810-817 .
    4. 吴怡颖,马宏伟,姜晓强,童宇. 双盘挤扩桩的静承载特性试验研究. 四川建材. 2020(04): 61-63 .

    Other cited types(4)

Catalog

    Article views (362) PDF downloads (218) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return