YU Lu, YANG Qing, ZHANG Jin-li. Ultimate bearing capacity of elliptical tip by upper bound analysis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 356-364. DOI: 10.11779/CJGE202102016
    Citation: YU Lu, YANG Qing, ZHANG Jin-li. Ultimate bearing capacity of elliptical tip by upper bound analysis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 356-364. DOI: 10.11779/CJGE202102016

    Ultimate bearing capacity of elliptical tip by upper bound analysis

    More Information
    • Received Date: April 22, 2020
    • Available Online: December 04, 2022
    • For the anchor pile with elliptical tip and T-bar, the bearing capacity and factor are obtained based on the upper-bound limit analysis of plasticity considering the influences of the aspect ratio of the elliptical tip (ξ≥1) and the friction coefficient. The velocity fields and hodographs of the elliptical tip of the anchor pile and T-bar are introduced. The total energy dissipation is figured by summing up each part of the internal energy dissipation and the energy dissipation on the velocity discontinuous surface. The bearing factor is equal to the ratio of the total energy dissipation over the velocity and diameter of the elliptical tip and soil strength. It is found that for ξ=1, there is a good consistency between the upper bound solutions and the previous results. Therefore, the upper bound models for the elliptical tip are rational. The influences of friction force become more significant with the increasing ξ for the penetration resistance coefficient. The upper and lower-bound solutions maintain consistency. The upper bound solutions of the bearing capacity are generally larger than the lower ones as the decreasing friction factor.
    • [1]
      MARTIN C M. Physical and Numerical Modelling of Offshore Foundations under Combined Loads[D]. Oxford: University of Oxford, 1994.
      [2]
      HU P, WANG D, CASSIDY M J, et al. Predicting the resistance profile of a spudcan penetrating sand overlying clay[J]. Canadian Geotechnical Journal, 2014, 51(10): 1151-1164. doi: 10.1139/cgj-2013-0374
      [3]
      MARTIN C M, HOULSBY G T. Undrained bearing capacity factors for conical footings on clay[J]. Géotechnique, 2003, 53(5): 513-520. doi: 10.1680/geot.2003.53.5.513
      [4]
      RANDOLPH M F, HOULSBY G T. The limiting pressure on a circular pile loaded laterally in cohesive soil[J]. Géotechnique, 1984, 34(3): 457-457.
      [5]
      MURFF J D, WAGNER D A, RANDOLPH M F. Pipe penetration in cohesive soil[J]. Géotechnique, 1989, 39(2): 213-229. doi: 10.1680/geot.1989.39.2.213
      [6]
      AUBENY C P, SHI H, MURFF J D. Collapse loads for a cylinder embedded in trench in cohesive soil[J]. International Journal of Geomechanics, 2005, 10: 320-325.
      [7]
      RANDOLPH M F, MARTIN C M, HU Y. Limiting resistance of a spherical penetrometer in cohesive material[J]. Géotechnique, 2000, 50(5): 573-582. doi: 10.1680/geot.2000.50.5.573
      [8]
      MARTIN C M, RANDOLPH M F. Upper-bound analysis of lateral pile capacity in cohesive soil[J]. Géotechnique, 2006, 56(2): 141-145. doi: 10.1680/geot.2006.56.2.141
      [9]
      GAO F P, ZHAO B. Slip-line field solution for ultimate bearing capacity of a pipeline on clayey soils[J]. Theoretical & Application Mechanics Letters, 2012, 2(5): 1-4
      [10]
      GAO F P, WANG N, ZHAO B. Ultimate bearing capacity of a pipeline on clayey soils: slip-line field solution and FEM simulation[J]. Ocean Engineering, 2013, 73(6): 159-167.
      [11]
      EINAV I, RANDOLPH M F. Combining upper bound and strain path methods for evaluating penetration resistance[J]. International Journal for Numerical Methods in Engineering, 2005, 63: 1991-2016. doi: 10.1002/nme.1350
      [12]
      RICHARDSON M D. Dynamically Installed Anchors for Floating Offshore Structures[D]. Perth: University of Western Australia, 2008.
      [13]
      O’LOUGHLIN C D, RICHARDSON M D, RANDOLPH M F. Centrifuge tests on dynamically installed anchors[C]//ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, 2009, Honolulu, Hawaii: 391-399.
      [14]
      刘朝安, 贾宁, 孟庆辉, 等. 椭圆形截面T型触探贯入阻力研究[J]. 工程地质学报, 2016, 24(增刊): 214-220. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201610001034.htm

      LIU Chao-an, JIA Ning, MENG Qing-hui, et al. Research on the resistance of T-bar test with oval cross section[J]. Journal of Engineering Geology, 2016, 24(S0): 214-220. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201610001034.htm
      [15]
      MEYERHOF G G. The ultimate bearing capacity of foundations[J]. Géotechnique, 1951, 2(4): 301-332. doi: 10.1680/geot.1951.2.4.301
      [16]
      CHEN W F. Limit Analysis and Soil Plasticity[M]. Amsterdam: Elsevier, 1975: 244-274.
      [17]
      闫洪. 塑性成形原理[M]. 北京: 清华大学出版社, 2006.

      YAN Hong. Fundamental of Plastic Forming[M]. Beijing: Tsinghua University Press, 2006. (in Chinese)
      [18]
      龚晓南. 土塑性力学[M]. 杭州: 浙江大学出版社, 1990.

      GONG Xiao-nan. Soil Plastic Mechanics[M]. Hangzhou: Zhejiang University Press, 1990. (in Chinese)
      [19]
      YAO Y P, HOU W, ZHOU A N. UH model: Three- dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
      [20]
      YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63(15): 1328-1345. doi: 10.1680/geot.13.P.035
      [21]
      YAO Y P, SUN D A, MATSUOKA H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path[J]. Computers and Geotechnics, 2008, 35(2): 210-222. doi: 10.1016/j.compgeo.2007.04.003
      [22]
      MARTIN C M, RANDOLPH M F. Applications of the lower and upper bound theorems of plasticity to collapse of circular foundations[C]//Proc 10th IACMAG Conf, 2001, Tucson: 1417-1428.
      [23]
      KIM Y H, HOSSAIN M S, WANG D. Effect of strain rate and strain softening on embedment depth of a dynamically installing anchor in clay[J]. Ocean Engineering, 2015, 108: 704-715. doi: 10.1016/j.oceaneng.2015.07.067
      [24]
      O’BEIRNE C, O’LOUGHLIN C D, WANG D, et al. Capacity of dynamically installed anchors as assessed through field testing and three-dimensional large-deformation finite element analyses[J]. Canadian Geotechnical Journal, 2015, 52(5): 548-562. doi: 10.1139/cgj-2014-0209
      [25]
      WANG D, HU Y, RANDOLPH M F. Three-dimensional large deformation finite-element analysis of plate anchors in uniform clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(2): 355-365. doi: 10.1061/(ASCE)GT.1943-5606.0000210
      [26]
      WANG D, WHITE D J, RANDOLPH M F. Large- deformation finite element analysis of pipe penetration and large-amplitude lateral displacement[J]. Canadian Geotechnical Journal, 2010, 47(8): 842-856(15). doi: 10.1139/T09-147
      [27]
      瑜璐, 杨庆, 杨钢, 等. 塑性极限分析鱼雷锚锚尖贯入阻力[J]. 岩土力学, 2020, 41(6): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006019.htm

      YU Lu, YANG Qing, YANG Gang, et al. An analysis of the resistance of elliptical tip of torpedo anchor by plastic limit analysis[J]. Rock and Soil Mechanics, 2020, 41(6): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006019.htm
      [28]
      TERZAGHI K, PECK R B, MESRI G. Soil Mechanics in Engineering Practice[M]. 2nd ed. New York: John Wiley& Sons, 1967: 223-224.

    Catalog

      Article views PDF downloads Cited by()
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return