CHEN Bao, SHU Qing-fei, DENG Rong-sheng. Microscopic interpretation of time-dependent strength of clay considering plate-like particle interactions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 271-280. DOI: 10.11779/CJGE202102007
    Citation: CHEN Bao, SHU Qing-fei, DENG Rong-sheng. Microscopic interpretation of time-dependent strength of clay considering plate-like particle interactions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 271-280. DOI: 10.11779/CJGE202102007

    Microscopic interpretation of time-dependent strength of clay considering plate-like particle interactions

    More Information
    • Received Date: July 01, 2020
    • Available Online: December 04, 2022
    • In order to explore its micro-mechanism, the time-dependent strength of clay is related to the overlapping mode and interaction potential of plate-like clay particles. The interaction force between the particles causes the particles to overlap toward a position with a lower potential energy. When the potential energy between the particles is the lowest, the time-dependent strength reaches a stable value. A total potential energy formula is proposed to consider the interaction between two adjacent plate-like particles with certain angle θ and distance d, where the Zeta potential can be used instead of surface potential to calculate the potential energy. The calculated results of the total potential energy are consistent with the actual situations. It is shown: (1) The time-dependent strength of clay has a close relationship with the electrolyte content. When the electrolyte concentration is low (≤10-3 mol/L), the total potential energy is the lowest while the two adjacent particles are perpendicular. When the electrolyte concentration is high (≥10-1 mol/L), the total potential energy is the lowest while the two adjacent particles are parallel, and the time-dependent strength is almost unchanged, or even reduced. (2) The stable overlap of clay particles is mainly vertical and parallel. The two adjacent particles will always tend to be overlapped each other in one of these two ways, and so it takes some time for clay to reach a stable value of the time-dependent strength. (3) The reason for the restoration of thixotropic strength of general clay may be explained as that particles will always tend to overlap vertically, and this overlap way leads to the highest strength of clay.
    • [1]
      张先伟, 孔令伟, 李峻, 等. 黏土触变过程中强度恢复的微观机理[J]. 岩土工程学报, 2014, 36(8): 1407-1413. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201408006.htm

      ZHANG Xian-wei, KONG Ling-wei, LI Jun, et al. Microscopic mechanism of strength increase of clay during thixotropic process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1407-1413. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201408006.htm
      [2]
      ZHANG X W, KONG L W, YANG A W. et al. Thixotropic mechanism of clay: a microstructural investigation[J]. Soils and Foundations, 2017, 57(1): 23-35. doi: 10.1016/j.sandf.2017.01.002
      [3]
      霍海峰, 齐麟, 雷华阳, 等. 天津软黏土触变性的思考与试验研究[J]. 岩石力学与工程学报, 2016, 35(3): 631-637. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603020.htm

      HUO Hai-feng, QI Lin, LEI Hua-yang, et al. Analysis and experimental study on thixotropy of Tianjin soft clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 631-637. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201603020.htm
      [4]
      OGDEN F L, RUFF J F. Setting time effects on bentonite water-well annulus seals[J]. Journal of Irrigation and Drainage Engineering, 1991, 117(4): 534-545. doi: 10.1061/(ASCE)0733-9437(1991)117:4(534)
      [5]
      OGDEN F L, RUFF J F. Strength of bentonite water-well annulus seals in confined aquifers[J]. Journal of Irrigation and Drainage Engineering, 1993, 199(2): 242-250.
      [6]
      OSIPOV V I, NIKOLAEVA S K, SOKOLOV V N. Microstructural changes associated with thixotropic phenomena in clay soils[J]. Géotechnique, 1984, 34(3): 293-303. doi: 10.1680/geot.1984.34.3.293
      [7]
      DERJAGUIN B V, LANDAU L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes[J]. Acta Physicochim, URSS, 1941, 14: 633-662.
      [8]
      VERWEY E J W, OVERBEEK J T G. Theory of the Stability of Lyophobic Colloids[M]. Amsterdam: Elsevier Publishing Company, Inc, 1948.
      [9]
      PETER B L, JOHN C B. Relating clay yield stress to colloidal parameters[J]. Journal of Colloid and Interface Science, 2006. 296: 749-755. doi: 10.1016/j.jcis.2005.09.061
      [10]
      SAKAIRI N, KOBAYASHI M, ADACHI Y. Effects of salt concentration on the yield stress of sodium montmorillonite suspension[J]. Journal of Colloid and Interface Science, 2005, 283: 245-250. doi: 10.1016/j.jcis.2004.08.181
      [11]
      MISSANA1 T, ADELL A. On the applicability of DLVO theory to the prediction of clay colloids stability[J]. Journal of Colloid and Interface Science, 2000, 230: 150-156. doi: 10.1006/jcis.2000.7003
      [12]
      苗司晗. 2∶1型黏土团聚体稳定性及黏土水迁移中的离子特异性效应[D]. 重庆: 西南大学, 2017.

      MIAO Si-han. 2:1 Type Clay Aggregate Stability and Ion Specific Effect in Clay Water Migration[D]. Chongqing: Southwest University, 2017. (in Chinese)
      [13]
      陈宝, 田昌春, 郭家兴, 等. 地下水对压实高庙子膨润土冲蚀作用研究[J]. 岩土力学, 2016, 37(11): 3224-3230. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611023.htm

      CHEN Bao, TIAN Chang-chun, GUO Jia-xing, et al. Erosion of compacted Gaomiaozi bentonite by groundwater flow[J]. Rock and Soil Mechanics, 2016, 37(11): 3224-3230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611023.htm
      [14]
      陈宝, 田昌春, 郭家兴, 等. 高庙子膨润土悬浮液的抗冲蚀流变特性[J]. 同济大学学报(自然科学版), 2017, 45(3): 317-322. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201703003.htm

      CHEN Bao, TIAN Chang-chun, GUO Jia-xing, et al. Anti-erosion Rheological Characteristics of Gaomiaozi Bentonite Suspension[J]. Journal of Tongji University (Natural Science), 2017, 45(3): 317-322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201703003.htm
      [15]
      SENG S, TANAKA H. Properties of very soft clays: a study of thixotropic hardening and behavior under low consolidation pressure[J]. Soils and Foundations, 2012, 52(2): 335-345. doi: 10.1016/j.sandf.2012.02.010
      [16]
      VAN OLPHEN H. An Introduction to Clay Colloid Chemistry[M]. 2nd ed. New York: John Wiley & Sons, 1977.
      [17]
      RUSSEL W B, SAVILLE D A. Colloidal Dispersions[M]. Cambridge: Cambridge University Press, 1991.
      [18]
      HIEMENZ P C, RAJAGOPALAN R. Principles of Colloid and Surface Chemistry, Revised and Expanded[M]. Boca Raton: CRC Press, 2016.
      [19]
      NGUYEN A, SCHULZE H J. Colloidal Science of Flotation[M]. Boca Raton: CRC Press, 2003.
      [20]
      OTSUKI A. Coupling colloidal forces with yield stress of charged inorganic particle suspension: a review[J]. Electrophoresis, 2018, 39(5/6): 690-701.
      [21]
      郭霞, 傅强, 田锐, 等. 动态光散射技术测定土壤/黏土胶体的Hamaker常数[J]. 西南大学学报(自然科学版), 2016, 38(6): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201606016.htm

      GUO Xia, FU Qiang, TIAN Rui, et al. Dynamic light scattering technology determination the hamaker constant of soil/clay colloids[J]. Journal of Southwest University (Natural Science Edition), 2016, 38(6): 74-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201606016.htm
      [22]
      刘成伦, 徐龙君, 鲜学福. 水溶液中盐的浓度与其电导率的关系研究[J]. 中国环境监测, 1999(4): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB199904008.htm

      LIU Cheng-lun, XU Long-jun, XIAN Xue-fu. Study on the relationship between concentration of salt solution and its conductivity[J]. Environmental Monitoring in China, 1999(4): 21-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB199904008.htm
      [23]
      ELIMELECH M, GREGORY J, JIA X. Particle Deposition and Aggregation: Measurement, Modelling and Simulation[M]. Oxford: Butterworth-Heinemann, 2013.
      [24]
      陈永贵, 蒯琪, 叶为民, 等. 高压实膨润土膨胀力预测研究[J]. 同济大学学报(自然科学版), 2018, 46(12): 1628-1636. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201812003.htm

      CHEN Yong-gui, KUAI Qi, YE Wei-Min, et al. Prediction of swelling pressure for compacted bentonite[J]. Journal of Tongji University (Natural Science), 2018, 46(12): 1628-1636. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201812003.htm
      [25]
      商翔宇, 鲁巨明, 杨晨, 等. 考虑黏土特性的离散元程序开发[J]. 防灾减灾工程学报, 2016, 36(4): 657-663. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201604023.htm

      SHANG Xiang-yu, LU Ju-ming, YANG Chen, et al. Development of discrete element code considering the characteristics of clay[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(04): 657-663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201604023.htm
      [26]
      周青. 蒙脱石层间域微结构及其吸附有机物的分子模拟[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2015.

      ZHOU Qing. Molecular Simulations of the Montmorillonite Interlayer microstructure and the Sorption towards Organics[D]. Guangzhou: Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2015. (in Chinese)
      [27]
      周金虹. 黏土矿物孔道表面与流体相互作用的分子模拟[D]. 南京: 南京大学, 2019.

      ZHOU Jin-hong. Molecular Simulation of Interaction Between Clay Mineral Pore Surface and Fluid[D]. Nanjing: Nanjing University, 2019. (in Chinese)
      [28]
      HOU J, LI H, ZHU H, et al. Determination of clay surface potential: a more reliable approach[J]. Soil Science Society of America Journal, 2009, 73(5): 1658-1663.
      [29]
      HU F, XU C, LI H, et al. Particles interaction forces and their effects on soil aggregates breakdown[J]. Soil and Tillage Research, 2015, 147: 1-9.
    • Cited by

      Periodical cited type(15)

      1. 杨舒涵,漆天奇,刘嘉英. 堆石料宏细观力学特性离散元分析. 人民长江. 2024(02): 203-210 .
      2. LI Shuai,GU Tianfeng,WANG Jiading,WANG Fei,LI Pu. Regulation effect of the grille spacing of a funnel-type grating water–sediment separation structure on the debris flow performance. Journal of Mountain Science. 2024(07): 2283-2304 .
      3. 王辉,钮新强,马刚,周伟. 干湿循环作用下堆石料宏细观力学特性的离散元模拟研究. 岩土力学. 2024(S1): 665-676 .
      4. 张江浩,冀鸿兰,杨震,李志军,刘晓民. 冻融循环下黄河堤岸砂质壤土宏细观破坏过程. 河海大学学报(自然科学版). 2024(06): 69-80 .
      5. 黄志刚,王轩,傅力,童立红. 加载速率和摩擦系数对颗粒材料系统剪切强度的影响研究. 力学季刊. 2024(04): 1032-1042 .
      6. 栗培龙,宿金菲,孙胜飞,王霄,马云飞. 多级矿料-沥青体系的颗粒特性、界面效应及迁移行为研究进展. 中国公路学报. 2023(01): 1-15 .
      7. 王伟,张志义,赵博. 煤矿井下风积沙箱式充填体侧向约束机理数值研究. 新疆大学学报(自然科学版)(中英文). 2023(03): 367-372 .
      8. 肖浩波,漆天奇,杨舒涵,周伟,刘嘉英. 椭球颗粒体系宏、细观特性的3维离散元分析. 工程科学与技术. 2023(06): 78-86 .
      9. 张革,曹玲,王成汤. 考虑各向异性影响的冻土修正线性黏结接触模型开发及应用. 岩土力学. 2023(S1): 645-654 .
      10. 郑虎,牛文清,毛无卫,黄雨. 颗粒材料双轴压缩试验的光弹测试. 同济大学学报(自然科学版). 2023(11): 1719-1724 .
      11. 王怡舒,刘斯宏,沈超敏,陈静涛. 接触摩擦对颗粒材料宏细观力学特征和能量演变规律的影响. 岩石力学与工程学报. 2022(02): 412-422 .
      12. 雷云,刘源,徐同桐,何子苗. 粒间摩擦和层厚比对二维分层颗粒系统底部响应的影响. 科学技术与工程. 2022(07): 2585-2591 .
      13. 刘嘉英,周伟,姬翔,魏纲,袁思莹,李欣骏. 基于细观拓扑结构演化的颗粒材料剪胀性分析. 力学学报. 2022(03): 707-718 .
      14. 蒋明杰,栗书亚,吉恩跃,张小勇,朱俊高. 粗粒土大型静止侧压力系数测定试验的颗粒流模拟. 科学技术与工程. 2021(25): 10867-10872 .
      15. 崔溦,魏杰,王超,王枭华,张社荣. 考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟. 岩土工程学报. 2021(12): 2230-2239 . 本站查看

      Other cited types(14)

    Catalog

      Article views PDF downloads Cited by(29)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return