• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
NING Fan-wei, KONG Xian-jing, ZOU De-gao, LIU Jing-mao, YU Xiang, ZHOU Chen-guang. Scale effect of rockfill materials and its influences on deformation and stress analysis of Aertashi CFRD[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 263-270. DOI: 10.11779/CJGE202102006
Citation: NING Fan-wei, KONG Xian-jing, ZOU De-gao, LIU Jing-mao, YU Xiang, ZHOU Chen-guang. Scale effect of rockfill materials and its influences on deformation and stress analysis of Aertashi CFRD[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 263-270. DOI: 10.11779/CJGE202102006

Scale effect of rockfill materials and its influences on deformation and stress analysis of Aertashi CFRD

More Information
  • Available Online: December 04, 2022
  • The influences of scale effect on the numerical analysis after construction stage of Aertashi CFRD are studied based on the super-large triaxial (800 mm in sample diameter and 160 mm in the maximum particle size) and commonly large triaxial (300 mm in sample diameter and 60 mm in the maximum particle size) test results. The test results show that the gravel and limestone blasting materials of Aertashi CFRD exhibit opposite trends on the deformation characteristics between the super-large triaxial and commonly large triaxial tests. For the Aertashi gravel materials, the parameters k and kb of Duncan-Chang E-B model for the super-large triaxial tests are 1.3~1.4 times those for the commonly large triaxial tests, while for the Aertashi limestone blasting materials, the parameters k and kb for the commonly large triaxial tests are 1.2~1.4 times those for the super-large triaxial tests. The parameters of Duncan-Chang E-B model for the common large triaxial tests fail to reflect the difference in the deformation moduli between the upstream gravel materials and downstream limestone blasting materials, which causes the simulated settlement to be inconsistent with the actual measurement. The simulated results by using the super-large triaxial parameters can well reflect the uneven settlement due to the different moduli between gravel and limestone blasting materials. The distribution and values of the settlement simulated by the super-large triaxial tests are much closer to the monitoring data.
  • [1]
    孔宪京, 徐斌, 邹德高, 等. 混凝土面板坝面板动力损伤有限元分析[J]. 岩土工程学报, 2014, 36(9): 1594-1600. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409007.htm

    KONG Xian-jing, XU Bin, ZOU De-gao, et al. Finite element dynamic analysis for seismic damage of slabs of concrete faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1594-1600. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409007.htm
    [2]
    陈生水. 土石坝试验新技术研究与应用[J]. 岩土工程学报, 2015, 37(1): 1-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501002.htm

    CHEN Sheng-shui. Experimental techniques for earth and rockfill dams and their applications[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 1-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201501002.htm
    [3]
    陈生水, 凌华, 米占宽, 等. 大石峡砂砾石坝料渗透特性及其影响因素研究[J]. 岩土工程学报, 2019, 41(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901004.htm

    CHEN Sheng-shui, LING Hua, MI Zhan-kuan, et al. Experimental study on permeability and its influencing factors for sandy gravel of Dashixia dam[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 26-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901004.htm
    [4]
    MARSAL R J. Large scale testing of rockfill materials[J]. Journal of the Soil Mechanics & Foundations Division, 1967, 93(2): 27-43.
    [5]
    MARACHI N D, CHAN C K, SEED H B. Evaluation of properties of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(1): 95-114. doi: 10.1061/JSFEAQ.0001735
    [6]
    李凤鸣, 卞富宗. 两种粗粒土的比较试验[J]. 勘察科学技术, 1991(2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX199102006.htm

    LI Feng-ming, BIAN Fu-zong. Comparison of two rockfill tests[J]. Site Investigation Science and Technology, 1991(2): 25-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KCKX199102006.htm
    [7]
    王继庄. 粗粒料的变形特性和缩尺效应[J]. 岩土工程学报, 1994, 16(4): 89-95. doi: 10.3321/j.issn:1000-4548.1994.04.012

    WANG Ji-zhuang. Deformation characteristic and scale effect of rockfiil material[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(4): 89-95. (in Chinese) doi: 10.3321/j.issn:1000-4548.1994.04.012
    [8]
    VARADARAJAN A, SHARMA K G, VENKATACHALAM K, et al. Testing and modeling two rockfill materials[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2003, 129(3): 206-218.
    [9]
    李翀, 何昌荣, 王琛, 等. 粗粒料大型三轴试验的尺寸效应研究[J]. 岩土力学, 2008, 29(增刊1): 563-566. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1113.htm

    LI Chong, HE Chang-rong, WANG Chen, et al. Study of scale effect of large-scale triaxial test of coarse-grained materials[J]. Rock and Soil Mechanics, 2008, 29(S1): 563-566. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1113.htm
    [10]
    凌华, 殷宗泽, 朱俊高, 等. 堆石料强度的缩尺效应试验研究[J]. 河海大学学报(自然科学版), 2011, 39(5): 540-544. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201904019.htm

    LING Hua, YIN Zong-ze, ZHU Jun-gao, et al. Experimental study of scale effect on strength of rockfill materials[J]. Journal of Hohai University (Natural Sciences), 2011, 39(5): 540-544. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201904019.htm
    [11]
    HU W, DANO C, HICHER P Y, et al. Effect of sample size on the behavior of granular materials[J]. Geotechnical Testing Journal, 2011, 34(3): 186-197.
    [12]
    HONKANADAVAR N P, GUPTA S L. Effect of particle size and confining pressure on shear strength parameter of rockfill materials[J]. Academic Research, 2012, 1(1): 49-63.
    [13]
    孔宪京, 宁凡伟, 刘京茂, 等. 基于超大型三轴仪的堆石料缩尺效应研究[J]. 岩土工程学报, 2018, 41(2): 255-261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902003.htm

    KONG Xian-jing, NING Fan-wei, LIU Jing-mao, et al. Scale effect of rockfill materials using super large triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 41(2): 255-261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902003.htm
    [14]
    褚福永, 朱俊高, 翁厚洋, 等. 堆石料强度及变形特性缩尺效应试验[J]. 河海大学学报(自然科学版), 2019, 47(4): 381-386. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201904019.htm

    CHU Fu-yong, ZHU Jun-gao, WENG Hou-yang, et al. Experimental study of scale effect on strength and deformation characteristics of rock-fill materials[J]. Journal of Hohai University (Natural Sciences), 2019, 47(4): 381-386. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201904019.htm
    [15]
    朱晟, 梁现培, 冯树荣. 基于现场大型承载试验的原级配筑坝堆石料力学参数反演研究[J]. 岩土工程学报, 2009, 31(7): 1138-1143. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200907030.htm

    ZHU Sheng, LIANG Xian-pei, FENG Shu-rong. Back analysis of mechanical parameters of naturally graded rockfill materials based on large-scale loading plate tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1138-1143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200907030.htm
    [16]
    孔宪京, 刘京茂, 邹德高. 堆石料尺寸效应研究面临的问题及多尺度三轴试验平台[J]. 岩土工程学报, 2016, 38(11): 1941-1947. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611003.htm

    KONG Xian-jing, LIU Jing-mao, ZOU De-gao. Scale effect of rockfill and multiple-scale triaxial test platform[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1941-1947. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201611003.htm
    [17]
    土工试验规程:SL237—1999[S]. 1999.

    Specification of Soil Test: SL237—1999[S]. 1999. (in Chinese)
    [18]
    孔宪京, 刘京茂, 邹德高, 等. 紫坪铺面板坝堆石料颗粒破碎试验研究[J]. 岩土力学, 2014, 35(1): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401004.htm

    KONG Xian-jing, LIU Jing-mao, ZOU De-gao, et al. Experimental study of particle breakage of Zipingpu rockfill material[J]. Rock and Soil Mechanics, 2014, 35(1): 35-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401004.htm
    [19]
    王晓鹤. 颗粒形状对堆石料强度和变形特性试验研究[D]. 大连: 大连理工大学, 2019.

    WANG Xiao-he. Experimental Study on Strength and Deformation Characteristics of Rockfill by Particle Shape[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
    [20]
    CHEN K, ZOU D, KONG X. A nonlinear approach for the three-dimensional polyhedron scaled boundary finite element method and its verification using Koyna gravity dam[J]. Soil Dynamics and Earthquake Engineering, 2017, 96: 1-12.
    [21]
    ZOU D G, CHEN K, KONG X J, et al. An enhanced octree polyhedral scaled boundary finite element method and its applications in structure analysis[J]. Engineering Analysis With Boundary Elements, 2017, 84: 87-107.
    [22]
    张宇. 高面板堆石坝面板地震响应,破损机理及抗震对策研究[D]. 大连: 大连理工大学, 2017.

    ZHANG Yu. Research on Seismic Response, Damage Mechanism and Anti-seismic Countermeasure of Face Slab of High Concrete Faced Rockfill Dam[D]. Dalian: Dalian University of Technology, 2017. (in Chinese)
    [23]
    杨蓉, 秦淑芳, 曾茂全, 等. 吉林台一级水电站混凝土面板堆石坝变形监测数据分析[J]. 水利水电技术, 2010, 41(6): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201006023.htm

    YANG Rong, QIN Shu-fang, ZENG Mao-quan, et al. Analysis on deformation monitoring data of concrete face rock-fill dam for Jilintai Hydropower Station I[J]. Water Resources and Hydropower Engineering, 2010, 41(6): 61-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201006023.htm
    [24]
    菅强, 顾永明, 韩庆. 察汗乌苏水电站面板堆石坝坝体沉降变形规律分析[J]. 西北水电, 2013(3): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SBXX201303020.htm

    JIAN Qiang, GU Yong-ming, HAN Qing. Analysis on law of settlement deformation of concrete face rockfill dam embankment[J]. Northwest Hydropower, 2013(3): 76-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SBXX201303020.htm
  • Related Articles

    [1]Parameter Extraction of Geometric Features of Gravel Material Based on Artificial Intelligence Analysis of CT Images[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240740
    [2]LI Wei, HAN Hua-qiang, JIANG Kui-chao, WU Ji-cai, FU Hua. Influences of drainage capacity on filtration performance of dam gravel materials[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 24-28. DOI: 10.11779/CJGE2022S1005
    [3]WU Li-qiang, YE Fei, LIN Wan-qing. Experimental study on scale effect of mechanical properties of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 141-145. DOI: 10.11779/CJGE2020S2025
    [4]ZUO Yong-zhen, ZHAO Na, ZHOU Yue-feng. Experimental study on strength and deformation characteristics of gravelly soil core materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 100-104. DOI: 10.11779/CJGE2020S1020
    [5]XU Kun, ZHOU Wei, MA Gang. Influence of particle breakage on scale effect of filling characteristics of rockfill material[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1013-1022. DOI: 10.11779/CJGE202006004
    [6]ZHU Sheng, SHEN Feng-sheng. Gradation characteristics and envelope curve design method for natural sandy gravel[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1738-1744. DOI: 10.11779/CJGE201909019
    [7]WANG Yan-li, RAO Xi-bao, PAN Jia-jun, ZUO Yong-Zhen, GAO Pan. Mechanical behaviors of interface between sand-gravel cushion material and concrete face slab by large-scale simple shear tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1538-1544. DOI: 10.11779/CJGE201908019
    [8]KONG Xian-jing, NING Fan-wei, LIU Jing-mao, ZOU De-gao, ZHOU Chen-guang. Scale effect of rockfill materials using super-large triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 255-261. DOI: 10.11779/CJGE201902002
    [9]CHEN Sheng-shui, LING Hua, MI Zhan Kuang, MIAO Zhe, MEI Shi-ang. Experimental study on permeability and its influencing factors for sandy gravel of Dashixia dam[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 26-31. DOI: 10.11779/CJGE201901002
    [10]XU Bin, KONG Xianjing, ZOU Degao, LOU Shulian. Laboratory study on behaviour of static properties of saturated sand-gravel after liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 103-106.
  • Cited by

    Periodical cited type(21)

    1. 苏永华,李明. 浅埋黄土地层隧道在不同交角下穿既有地下管线的模型试验. 安全与环境学报. 2024(05): 1786-1794 .
    2. 邓如勇. 小净距重叠盾构隧道施工工序研究. 铁道建筑技术. 2024(10): 48-53 .
    3. 吴彦斌,汤东. 基于有限元的双隧道位置和开挖顺序的相互影响分析. 建筑机械. 2023(02): 103-108 .
    4. 武春燕. 新建两并行盾构隧道下穿高铁隧道模型试验研究. 城市轨道交通研究. 2023(05): 220-226 .
    5. 姜海斌. 基于正交试验的复合地层盾构隧道下穿邻近管线敏感性因素研究. 现代城市轨道交通. 2023(06): 53-60 .
    6. 付欣,胡文君,王晓峰,黄鹏,李衍昭,程旭东. TBM管道隧道下穿施工对既有管道影响规律研究. 天然气与石油. 2023(03): 20-26 .
    7. 李洪江. 地铁隧道开挖对既有管线变形影响分析. 科学技术创新. 2022(05): 126-130 .
    8. 刘轶品. 空间特征对盾构下穿既有隧道响应规律. 西安科技大学学报. 2022(06): 1172-1179 .
    9. 范奇,张天奇. 盾构法重叠隧道施工过程中施工顺序及施工间隔对土体变形的影响研究. 天津大学学报(自然科学与工程技术版). 2022(12): 1318-1328 .
    10. 史江伟,范燕波,裴伟伟,陈永辉,张显. 盾构下穿非连续管线变形特性及预测方法研究. 岩土力学. 2021(01): 143-150 .
    11. 李志南,潘珂,王位赢,唐晓菲,马少坤,段智博. 双隧道开挖对地表沉降及地埋管线的影响研究. 广西大学学报(自然科学版). 2021(03): 588-597 .
    12. 安建永,雷海波,尹鸿威,刘泽亮,金昕,杨宁,管晓明. 富水砂层超小净距叠线盾构隧道施工安全控制技术. 隧道建设(中英文). 2021(S2): 503-511 .
    13. 赵乙丁,刘守花,阳军生,傅金阳,杨安民,刘玮. 小净距浅埋盾构隧道相互影响机制与控制措施研究. 北京交通大学学报. 2020(01): 120-128 .
    14. 管凌霄,徐长节,可文海,丁海滨,张高锋,虞巍巍. 盾构隧道下穿管道施工引起的管道水平位移研究. 土木与环境工程学报(中英文). 2020(06): 54-62 .
    15. 柳程柱,苏永华. 盾构施工引起的管线变形规律及安全风险评估. 铁道科学与工程学报. 2020(11): 2882-2891 .
    16. 杜明芳,满景奇,易领兵,朱东东. 郑州地铁某盾构区间隧道不同斜向交角下穿施工对铁路的影响研究. 现代隧道技术. 2020(S1): 466-472 .
    17. 周凯强,程桦,韩清,曹广勇,张迟. 不同开挖工序对基坑稳定性影响的数值模拟分析. 建筑结构. 2020(S2): 742-746 .
    18. 孙世成,郝美丽,崔林钊. 双线隧道近距离下穿市政管线数值模拟分析. 建井技术. 2020(06): 24-29+33 .
    19. 张治国,师敏之,张成平,魏纲,王志伟,赵其华. 类矩形盾构隧道开挖引起邻近地下管线变形研究. 岩石力学与工程学报. 2019(04): 852-864 .
    20. 李晓宁,杨祺隆,何昌迪. 双隧道非并行掘进对既埋管线的影响研究. 建材与装饰. 2019(16): 247-248 .
    21. 盛炎民,李书进,汤政,李金远,王宁宁. 可硬性盾构注浆材料试验研究. 混凝土. 2019(09): 108-110+116 .

    Other cited types(23)

Catalog

    Article views (311) PDF downloads (125) Cited by(44)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return