• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Xing, KONG Liang, LI Xue-feng. Non-coaxial sand model based on improved vertex theory and its application[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 254-262. DOI: 10.11779/CJGE202102005
Citation: WANG Xing, KONG Liang, LI Xue-feng. Non-coaxial sand model based on improved vertex theory and its application[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 254-262. DOI: 10.11779/CJGE202102005

Non-coaxial sand model based on improved vertex theory and its application

More Information
  • Received Date: April 21, 2020
  • Available Online: December 04, 2022
  • Although the non-coaxial models based on the traditional vertex theory can capture the non-coaxial behavior of sand, they contain some theoretical defects. An improved vertex theory is proposed and added to the state-dependent dilatancy model for sand, thus a new non-coaxial sand constitutive model is established. In this model, the non-coaxial plastic deformation is given only under loading conditions involving the change of the principal stress direction, which overcomes the shortcomings of the traditional vertex non-coaxial models. The implicit stress integration algorithm and consistent stiffness tensor of the model are given, and then the algorithm is verified by the simple shear experiment on Toyoura sand. Finally, the bearing capacity of strip foundation is analyzed by using the established model. The predicted results show that the introduction of the non-coaxial plasticity reduces the overall stiffness of the foundation model and results in a softer mechanical response, and neglecting the non-coaxial influences may lead to unsafe design.
  • [1]
    郑颖人, 孔亮. 岩土塑性力学[M]. 2版. 北京: 中国建筑工业出版社, 2020.

    ZHENG Ying-ren, KONG Liang. Geotechnical Plastic Mechanics[M]. 2nd ed. Beijing: China Architecture and Building Press, 2020. (in Chinese)
    [2]
    王兴, 孔亮, 李学丰. 砂土非共轴本构模型及其在地基承载力方面的应用[J]. 岩土工程学报, 2020, 42(5): 893-899. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005016.htm

    WANG Xing, KONG Liang, LI Xue-feng. Three-dimensional non-coaxial constitutive model for sand and its application in bearing capacity of foundation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 893-899. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005016.htm
    [3]
    TIAN Y, YAO Y P. Constitutive modeling of principal stress rotation by considering inherent and induced anisotropy of soils[J]. Acta Geotechnica, 2018, 13(6): 1299-1311. doi: 10.1007/s11440-018-0680-3
    [4]
    RUDNICKI J W, RICE J R. Conditions for the localization of deformation in pressure-sensitive dilatant materials[J]. Journal of the Mechanics and Physics of Solids, 1975, 23(6): 371-394. doi: 10.1016/0022-5096(75)90001-0
    [5]
    HASHIGUCHI K. The tangential plasticity[J]. Metals and Materials, 1998, 4(4): 652-656. doi: 10.1007/BF03026374
    [6]
    HASHIGUCHI K, TSUTSUMI S. Elastoplastic constitutive equation with tangential stress rate effect[J]. International Journal of Plasticity, 2001, 17(1): 117-145. doi: 10.1016/S0749-6419(00)00021-8
    [7]
    HASHIGUCHI K, TSUTSUMI S. Shear band formation analysis in soils by the subloading surface model with tangential stress rate effect[J]. International Journal of Plasticity, 2003, 19(10): 1651-1677. doi: 10.1016/S0749-6419(02)00113-4
    [8]
    田雨, 姚仰平, 罗汀. 从各向异性的角度解释和模拟土的非共轴特性[J]. 岩土力学, 2018, 39(6): 2035-2042. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806015.htm

    TIAN Yu, YAO Yang-ping, LUO Ting. Explanation and modeling of non-coaxiality of soils from anisotropy[J]. Rock and Soil Mechanics, 2018, 39(6): 2035-2042. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806015.htm
    [9]
    钱建固, 黄茂松, 杨峻. 真三维应力状态下土体应变局部化的非共轴[J]. 岩土工程学报, 2006, 28(4): 511-515. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200604015.htm

    QIAN Jian-gu, HUANG Mao-song, YANG Jun. Effect of non-coaxial plasticity on onset strain localization in soils under 3D stress condition[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 511-515. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200604015.htm
    [10]
    钱建固, 黄茂松. 复杂应力状态下岩土体的非共轴塑性流动理论[J]. 岩石力学与工程学报, 2006, 25(6): 1260-1264. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200606029.htm

    QIAN Jian-gu, HUANG Mao-song. Non-coaxial plastic flow theory in multi-dimensional stress state[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1260-1264. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200606029.htm
    [11]
    YANG Y, YU H S. Numerical aspects of non-coaxial model implementations[J]. Computers and Geotechnics, 2010, 37(1/2): 93-102.
    [12]
    YANG Y, YU H S. Application of a non-coaxial soil model in shallow foundations[J]. Geomechanics and Geoengineering: An International Journal, 2006, 1(2): 139-150. doi: 10.1080/17486020600777101
    [13]
    YANG Y, YU H S. A non-coaxial critical state soil model and its application to simple shear simulations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(13): 1369-1390. doi: 10.1002/nag.531
    [14]
    李学丰, 黄茂松, 钱建固. 宏-细观结合的砂土单剪试验非共轴特性分析[J]. 岩土力学, 2013, 34(12): 3418-3424. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312012.htm

    LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Analysis of non-coaxial characters of sand for simple shear test with the method of macro-meso-incorporation[J]. Rock and Soil Mechanics, 2013, 34(12): 3418-3424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312012.htm
    [15]
    扈萍, 黄茂松, 钱建固. 砂土非共轴特性的本构模拟[J]. 岩土工程学报, 2009, 31(5): 793-798. doi: 10.3321/j.issn:1000-4548.2009.05.025

    HU Ping, HUANG Mao-song, QIAN Jian-gu. Non-coaxial plasticity constitutive modeling of sands[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 793-798. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.05.025
    [16]
    陈洲泉, 黄茂松. 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报, 2018, 40(2): 243-251. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802005.htm

    CHEN Zhou-quan, HUANG Mao-song. Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 243-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802005.htm
    [17]
    CHEN Z, HUANG M. Non-coaxial behavior modeling of sands subjected to principal stress rotation[J]. Acta Geotechnica, 2019: 15(3): 655-669.
    [18]
    YANG Y, OOI J, ROTTER M, et al. Numerical analysis of silo behavior using non-coaxial models[J]. Chemical Engineering Science, 2011, 66(8): 1715-1727. doi: 10.1016/j.ces.2011.01.012
    [19]
    YANG Y, YU H S, KONG L. Implicit and explicit procedures for the yield vertex non-coaxial theory[J]. Computers and Geotechnics, 2011, 38(5): 751-755.
    [20]
    YUAN R, YU H S, HU N, et al. Non-coaxial soil model with an anisotropic yield criterion and its application to the analysis of strip footing problems[J]. Computers and Geotechnics, 2018, 99: 80-92.
    [21]
    袁冉, 杨文波, 余海岁, 等. 土体非共轴各向异性对城市浅埋土质隧道诱发地表沉降的影响[J]. 岩土工程学报, 2018, 40(4): 673-680. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804017.htm

    YUAN Ran, YANG Wen-bo, YU Hai-sui, et al. Effects of non-coaxiality and soil anisotropy on tunneling-induced subsurface settlements[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 673-680. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201804017.htm
    [22]
    蔡正银, 李相菘. 砂土的剪胀理论及其本构模型的发展[J]. 岩土工程学报, 2007, 29(8): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200708004.htm

    CAI Zheng-yin, LI Xiang-song. Development of dilatancy theory and constitutive model of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 13-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200708004.htm
    [23]
    姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报[J]. 2016, 38(12): 2147-2153. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201612004.htm

    YAO Yang-ping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201612004.htm
    [24]
    SLOAN S W. Substepping schemes for the numerical integration of elastoplastic stress-strain relations[J]. International Journal for Numerical Methods in Engineering, 1987, 24(5): 893-911.
    [25]
    SIMO J C, TAYLOR R L. Consistent tangent operators for rate-independent elastoplasticity[J]. Computer Methods in Applied Mechanics and Engineering, 1985, 48(1): 101-118.
    [26]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
    [27]
    姚仰平, 路德春, 周安楠. 岩土类材料的变换应力空间及其应用[J]. 岩土工程学报, 2005, 27(1): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200501002.htm

    YAO Yang-ping, LU De-chun, ZHOU An-nan. Transformed stress space for geomaterials and its application[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200501002.htm
    [28]
    孔亮, 李学丰, 赵占兵. 土体热力学本构模型的改进、验证及有限元分析[J]. 岩土工程学报, 2009, 31(10): 121-127. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200910026.htm

    KONG Liang, LI Xue-feng, ZHAO Zhan-bing. Improvement, verification and FEM analysis of thermomechanical model for soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200910026.htm
    [29]
    LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868-880.
    [30]
    DAFALIAS Y F. An anisotropic critical state soil plasticity model[J]. Mechanics Research Communications, 1986, 13(6): 341-347.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return