• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xian, YANG Zhen-hua, MEN Yan-qing. Temporal variation laws of longitudinal stress on cross section of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 188-193. DOI: 10.11779/CJGE202101022
Citation: LIU Xian, YANG Zhen-hua, MEN Yan-qing. Temporal variation laws of longitudinal stress on cross section of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 188-193. DOI: 10.11779/CJGE202101022

Temporal variation laws of longitudinal stress on cross section of shield tunnels

More Information
  • Received Date: February 18, 2020
  • Available Online: December 04, 2022
  • The longitudinal stress acting on the cross section of shield tunnels will affect the waterproof properties of the segments and the stiffness of the circumferential joints, which will thus affect the development trend of the longitudinal nonuniform settlements. At present, the longitudinal stress is estimated based on the experience in actual engineering. By solving the differential equation, the temporal variation laws of the longitudinal stress are proposed. The theoretical solution is also compared with meatured data from field experiments, and they matches well. The results show that the longitudinal stress decreases in fluctuations with time. The magnitude of the remaining stress is related to the creep coefficient of concrete and the compression modulus of formation. There is 20.4%~44% of the initial longitudinal stress left.
  • [1]
    BLOM C B M, HORST E J V D, JOVANOVIC P S. Three-dimensional structural analyses of the shield-driven “Green Heart” tunnel of the high-speed line south[J]. Tunnelling & Underground Space Technology, 1999, 14(2): 217-224.
    [2]
    KLAPPERS C, GRÜBL F, OSTERMEIER B. Structural analyses of segmental lining - coupled beam and spring analyses versus 3D-FEM calculations with shell elements[J]. Tunnelling and Underground Space Technology, 2006, 21(3).
    [3]
    MO H H, CHEN J S. Study on inner force and dislocation of segments caused by shield machine attitude[J]. Tunnelling and Underground Space Technology, 2008, 23(3): 281-291. doi: 10.1016/j.tust.2007.06.007
    [4]
    ARNAU O, MOLINS C, BLOM C B M, et al. Longitudinal time-dependent response of segmental tunnel linings[J]. Tunnelling and Underground Space Technology, 2011, 28(1): 98.
    [5]
    门燕青. 盾构法隧道纵向应力松弛的发生机理及其效应[D]. 上海: 同济大学, 2017.

    MEN Yan-qing. The Origination and Effect of Longitudinal Stress Relaxation Along the Shield Tunnel[D]. Shanghai: Tongji University, 2017. (in Chinese)
    [6]
    孙肖辉, 马孝春, 黄峰, 等. 小直径盾构施工中管片纵向应力监测研究[J]. 隧道建设(中英文), 2017, 37(11): 1436-1441. doi: 10.3973/j.issn.2096-4498.2017.11.012

    SUN Xiao-hui, MA Xiao-chun, HUANG Feng, et al. Study of monitoring of longitudinal stress of small-diameter shield tunnel segment during construction[J]. Tunnel Construction, 2017, 37(11): 1436-1441. (in Chinese) doi: 10.3973/j.issn.2096-4498.2017.11.012
    [7]
    廖少明, 门燕青, 肖明清, 等. 软土盾构法隧道纵向应力松弛规律的实测分析[J]. 岩土工程学报, 2016, 39(5): 795-803. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705005.htm

    LIAO Shao-ming, MEN Yan-qing, XIAO Ming-qing, et al. Field tests on longitudinal stress relaxation along shield tunnel in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 795-803. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705005.htm
    [8]
    CEB-FIP. CEB-FIP Model Code 1990[S]. London: Thomas Telford, 1993.
    [9]
    公路钢筋混凝土及预应力混凝土桥涵设计规范:JTG D62—2004[S]. 北京: 人民交通出版社, 2004.

    Code for Design of High Way Reinforced Concrete and Prestressed Concrete Bridge and Culverts: JTG D62—2004[S]. Beijing: Chinese Communications Publishing, 2004. (in Chinese)
    [10]
    KOEK A J. Axiale voorspanning in de lining van een geboorde tunnel[D]. Delft: Delft University of Technology, 2004. (in Dutch)
    [11]
    SALTELLI A. Sensitivity Analysis[M]. Chichester: Wiley, 2000.
    [12]
    蔡毅, 邢岩, 胡丹. 敏感性分析综述[J]. 北京师范大学学报(自然科学版), 2008, 44(1): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ200801004.htm

    CAI Yi, XING Yan, HU Dan. On sensitivity analysis[J]. Journal of Beijing Normal University (Natural Science), 2008, 44(1): 9-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ200801004.htm
  • Cited by

    Periodical cited type(11)

    1. 吕宏强,唐天成,包晨宇. 基于光滑粒子流体动力学法的流固共轭自然对流传热数值模拟. 航空学报. 2025(05): 180-196 .
    2. 付永帅. 基于机器视觉的水利枢纽工程生态脆弱区地基渗流仿真分析. 水利规划与设计. 2024(01): 89-93+102 .
    3. 高玉峰,王玉杰,张飞,姬建,陈亮,倪钧钧,张卫杰,宋健,杨尚川. 边坡工程与堤坝工程研究进展. 土木工程学报. 2024(08): 97-118 .
    4. 张德沧,毛佳,戴妙林,邵琳玉,赵兰浩. 圆化离散单元法的改进及其在岩体断裂过程中的应用. 岩土工程学报. 2024(09): 1974-1983 . 本站查看
    5. 黄帅,刘传正,GODA Katsuichiro. 光滑粒子流体动力学方法在饱和边坡地震滑移大变形中的适用性研究. 岩土工程学报. 2023(02): 336-344+443 . 本站查看
    6. 桂滨,林岩松,关彦斌. 高压浆液挤压饱和土体变形模拟的SPH方法. 公路交通科技. 2023(03): 51-57 .
    7. 王占彬,张卫杰,张健,代登辉,高玉峰. 基于并行SPH方法的地震滑坡对桥桩的冲击作用. 湖南大学学报(自然科学版). 2022(07): 54-65 .
    8. 张卫杰,余瑞华,陈宇,高玉峰,黄雨. 强度指标影响下滑坡运动特征及参数反分析. 岩土工程学报. 2022(12): 2304-2311 . 本站查看
    9. 戴轩,郑刚,程雪松,霍海峰. 基于DEM-CFD方法的基坑工程漏水漏砂引发地层运移规律的数值模拟. 岩石力学与工程学报. 2019(02): 396-408 .
    10. 杜彬,邱兆勇. 防渗墙技术在堤坝施工中的应用. 水利科学与寒区工程. 2019(02): 123-125 .
    11. 张卫杰,郑虎,王占彬,高玉峰. 基于三维并行SPH模型的土体流滑特性研究. 工程地质学报. 2018(05): 1279-1284 .

    Other cited types(6)

Catalog

    Article views (288) PDF downloads (129) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return