• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Yang, CUI Jie, LIAO Jing-rong, HYODO Masayuki. Experimental study on mechanical characteristics of gas hydrate-bearing sands containing different fines[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 156-164. DOI: 10.11779/CJGE202101018
Citation: WU Yang, CUI Jie, LIAO Jing-rong, HYODO Masayuki. Experimental study on mechanical characteristics of gas hydrate-bearing sands containing different fines[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 156-164. DOI: 10.11779/CJGE202101018

Experimental study on mechanical characteristics of gas hydrate-bearing sands containing different fines

More Information
  • Received Date: June 16, 2020
  • Available Online: December 04, 2022
  • The skeleton structure of gas hydrate-bearing sediments from ocean gas exploitation is composed of coarse grains and fines. A series of low-temperature and high-pressure triaxial drained shear tests are performed to examine the effects of fines and density on the strength and deformation properties of host sands with and without gas hydrate. The results imply that the shear strength and dilation tendency increase with a rise in fines. The rise in fines alerts hydrate morphology and distribution pattern among sand grains. The cluster of coarse grains and fines bonded by hydrate are formed in samples. The shear behavior of host sands exhibits opposite varying tendency with the increasing fines. Moreover, the stress-dilatancy relationship can be modeled using the equation adopted by the modified Cam-clay model and is dependent on hydrate saturation. At a larger hydrate saturation level, the natural samples own a higher peak friction angle and larger increasing speed with the level of gas hydrate than the gas hydrate-bearing samples synthetized in laboratory. The difference is originated from the nucleation mode and distribution pattern of hydrate mass among sand grains.
  • [1]
    SLOAN E D. Clathrate hydrate measurements: Microscopic, mesoscopic, and macroscopic[J]. Journal of Chemical Thermodynamics, 2003, 35(1): 41-53. doi: 10.1016/S0021-9614(02)00302-6
    [2]
    MASUI A, HANEDA H, OGATA Y, et al. Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]//The Fifteenth International Offshore and Polar Engineering Conference, 2005, Seoul.
    [3]
    李洋辉, 宋永臣, 于锋, 等. 围压对含水合物沉积物力学特性的影响[J]. 石油勘探与开发, 2011, 38(5): 637-640. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201105020.htm

    LI Yang-hui, SONG Yong-chen, YU Feng, et al. Effect of confining pressure on mechanical behavior of methane hydrate-bearing sediments[J]. Petroleum Exploration and Development, 2011, 38(5): 637-640. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201105020.htm
    [4]
    张旭辉, 王淑云, 李清平, 等. 天然气水合物沉积物力学性质的试验研究[J]. 岩土力学, 2010, 31(10): 3069-3074. doi: 10.3969/j.issn.1000-7598.2010.10.007

    ZHANG Xu-hui, WANG Shu-yun, LI Qing-ping, et al. Experimental study of mechanical properties of gas hydrate deposits[J]. Rock and Soil Mechanics, 2010, 31(10): 3069-3074. (in Chinese). doi: 10.3969/j.issn.1000-7598.2010.10.007
    [5]
    魏厚振, 颜荣涛, 陈盼, 等. 不同水合物含量含二氧化碳水合物砂三轴试验研究[J]. 岩土力学, 2011, 32(增刊2): 198-203. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2032.htm

    WEI Hou-zhen, YAN Rong-tao, CHEN Pan, et al. Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different hydrate contents under triaxial shear tests[J]. Rock and Soil Mechanics, 2011, 32(S2): 198-203. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2032.htm
    [6]
    刘芳, 寇晓勇, 蒋明镜, 等. 含水合物沉积物强度特性的三轴试验研究[J]. 岩土工程学报, 2013, 35(8): 1565-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308027.htm

    LIU Fang, KOU Xiao-yong, JIANG Ming-jing, et al. Triaxial shear strength of synthetic hydrate-bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1565-1572. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308027.htm
    [7]
    颜荣涛, 韦昌富, 魏厚振, 等. 水合物形成对含水合物砂土强度影响[J]. 岩土工程学报, 2012, 34(7): 1234-1240. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207010.htm

    YAN Rong-tao, WEI Chang-fu, WEI Hou-zhen, et al. Effect of hydrate formation on mechanical strength of hydrate-bearing sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1234-1240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207010.htm
    [8]
    HYODO M, YONEDA J, YOSHIMOTO N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314. doi: 10.1016/j.sandf.2013.02.010
    [9]
    YONEDA J, MASUI A, KONNO Y, et al. Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66: 471-486. doi: 10.1016/j.marpetgeo.2015.02.029
    [10]
    刘乐乐, 张旭辉, 刘昌岭, 等. 含水合物沉积物三轴剪切试验与损伤统计分析[J]. 力学学报, 2016, 48(3): 720-729. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603021.htm

    LIU Le-le, ZHANG Xu-hui, LIU Chang-ling, et al. Triaxial shear tests and statistical analyses of damage for methane hydrate-bearing sediments[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 720-729. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201603021.htm
    [11]
    WU Y, LI N, HYODO M, et al. Modeling the mechanical response of gas hydrate reservoirs in triaxial stress space[J]. International Journal of Hydrogen Energy, 2019, 44(48): 26698-26710.
    [12]
    颜荣涛, 梁维云, 韦昌富, 等. 考虑赋存模式影响的含水合物沉积物的本构模型研究[J]. 岩土力学, 2017, 38(1): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701003.htm

    YAN Rong-tao, LIANG Wei-yun, WEI Chang-fu, et al. A constitutive model for gas hydrate-bearing sediments considering hydrate occurring habits[J]. Rock and Soil Mechanics, 2017, 38(1): 10-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701003.htm
    [13]
    蒋明镜, 朱方园, 申志福. 试验反压对深海能源土宏观力学特性影响的离散元分析[J]. 岩土工程学报, 2013, 35(2): 219-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302006.htm

    JIANG Ming-jing, ZHU Fang-yuan, SHEN Zhi-fu. Influence of back pressure on macro-mechanical properties of methane hydrate soils by DEM analyses[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 219-226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302006.htm
    [14]
    蒋明镜, 朱方园. 不同温压环境下深海能源土力学特性离散元分析[J]. 岩土工程学报, 2014, 36(10): 1761-1769. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201410002.htm

    JIANG Ming-jing, ZHU Fang-yuan. DEM investigation on mechanical properties of methane hydrate bearing soils under different temperatures and pore-water pressures[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1761-1769. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201410002.htm
    [15]
    LEE M W. Models for Gas Hydrate-Bearing Sediments Inferred from Hydraulic Permeability and Elastic Velocities[R]. Herndon VA: US Geological Survey, 2008: 14.
    [16]
    MINAGAWA H, NISHIKAWA Y, IKEDA I, et al. Characterization of sand sediment by pore size distribution and permeability using proton nuclear magnetic resonance measurement[J]. Journal of Geophysical Research: Solid Earth, 2008, 113, B07210.
    [17]
    SUZUKI K, EBINUMA T, NAIRTA H. Features of methane hydrate-bearing sandy-sediments of the forearc basin along the Nankai Trough: Effect on methane hydrate-accumulating mechanism in turbidite[J]. Journal of Geography (Chigaku Zasshi), 2009, 118(5): 899-912.
    [18]
    土的工程分类标准:GB/ T50145—2007[S]. 2007.

    Standard for Engineering Classification of Soil: GB/ T50145—2007[S]. 2007. (in Chinese)
    [19]
    EGAWA K, NISHIMURA O, IZUMI S, et al. Bulk sediment mineralogy of gas hydrate reservoir at the East Nankai offshore production test site[J]. Marine and Petroleum Geology, 2015, 66: 379-387.
    [20]
    YONEDA J, JIN Y, KATAGIRI J, TENMA N. Strengthening mechanism of cemented hydrate-bearing sand at microscales[J]. Geophysical Research Letters, 2016, 43(14): 7442-7450.
    [21]
    ROSCOE K H, BURLAND J B. On the generalized stress-strain behavior of ‘wet’ clay[M]. HEYMAN J, LECKIE F A, ed. Engineering Plasticity. Cambridge: Cambridge University Press, 1968: 535-609.
    [22]
    WANG L, LI Y H, SHEN S, et al. Mechanical behaviours of gas-hydrate-bearing clayey sediments of the South China Sea[J/OL]. Environmental Geotechnics, 2019: 1-13. doi: 10.1680/jenge.19.00048.
    [23]
    YONEDA J, OSHIMA M, KIDA M, et al. Pressure core based onshore laboratory analysis on mechanical properties of hydrate-bearing sediments recovered during India’s National Gas Hydrate Program Expedition (NGHP) 02[J]. Marine and Petroleum Geology, 2019, 108: 482-501.
    [24]
    MIYAZAKI K, MASUI A, SAKAMOTO Y, et al. Triaxial compressive properties of artificial methane hydrate-bearing sediment[J]. Journal of Geophysical Research: Solid Earth, 2011, 116, B06102.
    [25]
    PRIEST J A, HAYLEY J L. Strength of laboratory synthesized hydrate-bearing sands and their relationship to natural hydrate-bearing sediments[J]. Journal of Geophysical Research: Solid Earth, 2019, 124, B018324.
  • Related Articles

    [1]WU Shuai-feng, YAN Jun, CAI Hong, WEI Ying-qi, DU Ji-fang, LIU Chuan-peng. Experimental study on characteristics of impact force of tailing flow under dam break of tailing reservoir[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 219-225. DOI: 10.11779/CJGE2020S2039
    [2]RAN Yong-hong, WANG Xiu-li, WANG Peng, ZHANG Zhi-jiang. Experimental study on dynamic performance of concrete filled steel tubular piles under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 81-86. DOI: 10.11779/CJGE2018S1013
    [3]LIU Jie, FENG Shi-guo, LI Tian-bin, WANG Rui-hong, LEI Lan, WANG Fei. Prediction of dynamic response of rock under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2022-2030. DOI: 10.11779/CJGE201811008
    [4]GAO Meng, ZHANG Ji-yan, GAO Guang-yun, CHEN Qing-shen, CHAO Ming-song, LI Da-yong. Solution to transient response of a cylindrical lined tunnel in an infinite elastic medium under internal blast load[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1366-1373. DOI: 10.11779/CJGE201708002
    [5]QIU Chang-lin, WANG Jing, YAN Shu-wang. Coupled DEM-FEM analysis of submarine pipelines with rock armor berm under impact load[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2088-2093. DOI: 10.11779/CJGE201511021
    [6]DING Xuan-ming, LIU Han-long. Time-domain analytical solution of the vibration response of a large-diameter pipe pile subjected to transient concentrated load[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1010-1017.
    [7]LING Dao-sheng, ZHANG Fei-xia, WANG Yun-gang, SHAN Zhen-dong, FANG Zhi-hui. Exact solution for one-dimensional transient response of single-layer fluid-saturated porous media under arbitrary vertical loadings[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 966.
    [8]GAO Meng, GAO Guang-yun, LI Da-yong. Transient response of lining structure subjected to sudden internal uniform loading considering effects of coupling mass[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 862.
    [9]CAI Yuan-qiang, CHEN Cheng-zhen, SUN Hong-lei. Transient dynamic response of tunnels subjected to blast loads in saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 361.
    [10]LIU Hanlong, DING Xuanming. Analytical solution of dynamic response of cast-in-situ concrete thin-wall pipe piles under transient concentrated load with low strain[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1611-1617.
  • Cited by

    Periodical cited type(19)

    1. 洪嘉伟,张彬,潘道明. 隧道注浆圈渗透系数对邻侧隧道的影响. 交通科技与管理. 2025(01): 147-151 .
    2. 袁立刚,冷伍明,姜涌,朱铁环,安永林,岳健. 降雨对江底凹形纵坡隧道排水池区段的影响及排水报警方法. 铁道科学与工程学报. 2025(03): 1369-1382 .
    3. 陈云娟,王乐宁,周宗青,贾润枝,杨卓,罗平利,刘梦悦. 基于海底隧道衬砌孔隙水压力的涌水量预测方法及工程应用. 应用基础与工程科学学报. 2024(01): 288-300 .
    4. 韩智铭,闫科宇,王雪,朱正国,崔会敏. 有限地层三孔并行海底隧道渗流场解析研究. 铁道工程学报. 2024(01): 45-52 .
    5. 汤钰,王华宁,宋飞. 渗透各向异性地层中隧洞稳态渗流场的半解析预测模型. 力学季刊. 2024(02): 473-482 .
    6. 韩智铭,闫科宇,崔会敏,刘庆宽. 基于等效面积法的三孔并行海底隧道渗流场解析研究. 工程力学. 2024(S1): 112-116+149 .
    7. 高启程,姜启武,陈志杰,赖鹏安. 考虑损伤效应的隧道二维渗流场解析及涌水量预测. 人民长江. 2024(10): 197-204+211 .
    8. 李航达,杨广鹏,韩智铭. 多洞并行海底隧道最佳覆岩厚度变化规律研究. 石家庄铁道大学学报(自然科学版). 2024(03): 40-46 .
    9. 卢玉东,国金琦,程大伟,毛兴隆. 考虑固液二相互态特性的流固耦合模型. 中国公路学报. 2023(01): 58-69 .
    10. 张兵海,崔炜,张石磊,杜三林,邓检强,刘毅,朱银邦. 临近水库的隧洞二维渗流场解析解及工程应用研究. 水利水电技术(中英文). 2023(03): 126-134 .
    11. 马少坤,陈彩洁,段智博,刘莹. 基于镜像法的有限含水层内隧道渗流场解析解及其验证. 工程力学. 2023(05): 172-181 .
    12. 胡红星. 富水破碎带地层TBM隧道围岩稳定性研究. 科技与创新. 2023(17): 39-44 .
    13. 乔彤,周建,张天骄,蒋熠诚. 考虑渗透各向异性的水下非圆形隧道渗流场解析. 工程科学与技术. 2023(05): 109-117 .
    14. 徐锋. 隧道穿越富水断层多场耦合特征分析及施工控制技术. 铁道建筑技术. 2022(05): 148-152 .
    15. 金波,胡明,方棋洪. 考虑渗流效应的深埋海底隧道围岩与衬砌结构应力场研究. 力学学报. 2022(05): 1322-1330 .
    16. 郑培超,闫科宇,王雪,韩智铭. 海底隧道三孔并行渗流场泄压规律研究. 现代隧道技术. 2022(S1): 353-362 .
    17. 王昊,刘广,王静峰,张兴其,浦玉炳,严中,丁兆东. 少荃湖湖底隧道工程渗流场特性分析. 人民珠江. 2021(10): 63-67 .
    18. 李沣展,岳健,安永林,孙超杰,谭仁华. 河底浅埋小净距隧道施工期渗流性状分析. 湖南科技大学学报(自然科学版). 2021(04): 47-54 .
    19. 叶亮,丁文其,张清照. 地下水对岩石隧道衬砌作用计算方法的探讨. 现代隧道技术. 2021(S1): 326-335 .

    Other cited types(13)

Catalog

    Article views (363) PDF downloads (212) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return