• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Mao-song, TONG Sen-jie, SHI Zhen-hao, LÜ Xi-lin. Prediction initiation of static liquefaction of saturated sand under complex stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 19-26. DOI: 10.11779/CJGE202101002
Citation: HUANG Mao-song, TONG Sen-jie, SHI Zhen-hao, LÜ Xi-lin. Prediction initiation of static liquefaction of saturated sand under complex stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 19-26. DOI: 10.11779/CJGE202101002

Prediction initiation of static liquefaction of saturated sand under complex stress paths

More Information
  • Received Date: February 04, 2020
  • Available Online: December 04, 2022
  • The stress-strain relations of saturated sand are anisotropic and state-dependent, thus the initiation of its static liquefaction relies on stress paths. While various criteria have been proposed to predict the triggering of static liquefaction, their accuracy is normally examined under triaxial stress paths. When subjected to complex stress paths that involve the rotation of the principal stress directions and different relative magnitudes of the intermediate principal stress, the accuracy of these criteria remains to be an open question. Here the capacity of three criteria is evaluated, including the second-order work, symmetric part of the elastoplastic stiffness matrix and instability modulus, for predicting the static liquefaction under complex stress paths, by employing a state-dependent, anisotropic constitutive model and comparing against the hollow cylindrical torsional shear tests on Toyoura sand. It is found that: (1) The instability condition derived from the elastoplastic stiffness matrix does not depend on the stress paths, thus being more general, and the predicted liquefaction initiation is earlier than or coincident with the actual instability point. (2) The instability modulus approach can predict the initiation of static liquefaction, however, the instability conditions vary across different loading paths. The instability line is obtained, through which the influences of factors like the intermediate principal stress and the principal stress directions on the peak mobilized friction angle before liquefaction are studied.
  • [1]
    SLADEN J A, DHOLLANDER R D, KRAHN J. Back analysis of the Nerlerk berm liquefaction slides[J]. Canadian Geotechnical Journal, 1985, 22(4): 579-588. doi: 10.1139/t85-077
    [2]
    ZENG S, LU X L, HUANG M S. Discrete element modeling of static liquefaction of shield tunnel face in saturated sand[J]. Acta Geotechnica, 2019, 14: 1643-1652. doi: 10.1007/s11440-019-00806-w
    [3]
    黄茂松, 李学丰, 钱建固. 各向异性砂土的应变局部化分析[J]. 岩土工程学报, 2012, 34(10): 1885-1892. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201210004.htm

    HUANG Mao-song, LI Xue-feng, QIAN Jian-gu. Strain localization of anisotropic sands[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1885-1892. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201210004.htm
    [4]
    黄茂松, 曲勰, 吕玺琳. 基于状态相关本构模型的松砂静态液化失稳数值分析[J]. 岩石力学与工程学报, 2014, 33(7): 1479-1487. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407021.htm

    HUANG Mao-song, QU Xie, LÜ Xi-lin. Instability and static liquefaction analysis of loose sands with a state-dependent constitutive model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1479-1487. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407021.htm
    [5]
    MROZ Z, BOUKPETI N, DRESCHER A. Constitutive model for static liquefaction[J]. International Journal of Geomechanics, 2003, 3(2): 133-144. doi: 10.1061/(ASCE)1532-3641(2003)3:2(133)
    [6]
    吕玺琳, 赖海波, 黄茂松. 饱和土体静态液化失稳理论预测[J]. 岩土力学, 2014, 35(5): 1330-1333, 1339. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405018.htm

    LÜ Xi-lin, LAI Hai-bo, HUANG Mao-song. Theoretically predicting instability of static liquefaction of saturated soils[J]. Rock and Soil Mechanics, 2014, 35(5): 1330-1333, 1339. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405018.htm
    [7]
    ANDRADE J E. A predictive framework for liquefaction instability[J]. Géotechnique, 2009, 59(8): 673-682. doi: 10.1680/geot.7.00087
    [8]
    LASHKARI A. Prediction of flow liquefaction instability of clean and silty sands[J]. Acta Geotechnica, 2016, 11(5): 987-1014. doi: 10.1007/s11440-015-0413-9
    [9]
    BUSCARNERA G, DATTOLA G, DI PRISCO C. Controllability, uniqueness and existence of the incremental response: A mathematical criterion for elastoplastic constitutive laws[J]. International Journal of Solids and Structures, 2011, 48(13): 1867-1878. doi: 10.1016/j.ijsolstr.2011.02.016
    [10]
    NOVA R. Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes[J]. Journal of the Mechanical Behavior of Materials, 1994, 5(2): 193-202. doi: 10.1515/JMBM.1994.5.2.193
    [11]
    BUSCARNERA G, WHITTLE A J. Model prediction of static liquefaction: influence of the initial state on potential instabilities[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(3): 420-432. doi: 10.1061/(ASCE)GT.1943-5606.0000779
    [12]
    WANATOWSKI D, CHU J. Static liquefaction of sand in plane strain[J]. Canadian Geotechnical Journal, 2007, 44(3): 299-313. doi: 10.1139/t06-078
    [13]
    YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998, 38(3): 179-188. doi: 10.3208/sandf.38.3_179
    [14]
    吕玺琳, 钱建固, 黄茂松. 不排水加载条件下K0固结饱和砂土失稳预测[J]. 岩土工程学报, 2015, 37(6): 1010-1015. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506007.htm

    LÜ Xi-lin, QIAN Jian-gu, HUANG Mao-song. Prediction of instability of K0-consolidated saturated sands under undrained loading conditions[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1010-1015. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506007.htm
    [15]
    LÜ X L, HUANG M S. Static liquefaction of sands under isotropically and K0-consolidated undrained triaxial conditions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(1): 04014087. doi: 10.1061/(ASCE)GT.1943-5606.0001206
    [16]
    LÜ X L, HUANG M S, ANDRADE J E. Predicting the initiation of static liquefaction of cross-anisotropic sands under multiaxial stress conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(17): 1724-1740. doi: 10.1002/nag.2697
    [17]
    陈洲泉, 黄茂松. 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报, 2018, 40(2): 243-251. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802005.htm

    CHEN Zhou-quan, HUANG Mao-song. Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 243-251 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802005.htm
    [18]
    PAPADIMITRIOU A G, BOUCKOVALAS G D. Plasticity model for sand under small and large cyclic strains: A multiaxial formulation[J]. Soil Dynamics and Earthquake Engineering, 2002, 22: 194-204.
    [19]
    LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868-880. doi: 10.1061/(ASCE)1090-0241(2002)128:10(868)
    [20]
    ODA M, NAKAYAMA H. Introduction of inherent anisotropy of soil in the yield function[C]//Micromechanics of Granular Materials, 1988, Amsterdam: 81-89.
    [21]
    YANG Z X, LI X S, YANG J. Quantifying and modelling fabric anisotropy of granular soils[J]. Géotechnique, 2008, 58(4): 237-248. doi: 10.1680/geot.2008.58.4.237
    [22]
    VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91.
    [23]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112.
    [24]
    HILL R. A general theory of uniqueness and stability in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1958, 6(3): 236-249.
    [25]
    LADE P V. Static instability and liquefaction of loose fine sandy slopes[J]. Journal of Geotechnical Engineering, 1992, 118(1): 51-71.
    [26]
    LÜ X L, HUANG M S, ANDRADE J E. Modeling the static liquefaction of unsaturated sand containing gas bubbles[J]. Soils and Foundations, 2018, 58(1): 122-133.
    [27]
    ANDEADE J E. A predictive framework for liquefaction instability[J]. Géotechnique, 2009, 59(8): 673-682.
    [28]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
  • Cited by

    Periodical cited type(8)

    1. 王怀强,李孝波,王天虎,席书衡,宣雨童. 基于岩土竖向台阵开展场地地震反应研究的若干进展. 地震工程与工程振动. 2025(02): 50-63 .
    2. 范宏飞,王彦臻,陈炜昀,陈国兴,赵凯. 水平成层海床场地非线性地震反应的流-固弱耦合分析. 振动工程学报. 2025(04): 849-859 .
    3. 郭云峰. 岩土勘察中地震效应问题的研究. 科技与创新. 2023(13): 117-119+122 .
    4. 王永光,梁建文,巴振宁. 基于修正阻尼的土体非线性模型及其在Abaqus中的实现. 岩土力学. 2023(08): 2287-2296 .
    5. 陈国兴,夏高旭,王彦臻,金丹丹. 琼州海峡海床地震反应特性的一维非线性分析. 工程力学. 2022(05): 75-85 .
    6. 赵凯,夏高旭,王彦臻,赵丁凤,庄海洋,陈国兴. 土–地下结构相互作用的三维弱耦合有效应力分析法. 岩土工程学报. 2022(05): 861-869 . 本站查看
    7. 阮滨,吉瀚文,王苏阳,贺鸿俊,苗雨. 基于台阵观测的基岩地震动入射波分离方法及数值验证. 岩土力学. 2022(09): 2615-2623+2642 .
    8. 陈伟庚,刘洋,王栋,岳茂,张良. 西南山区铁路沿线反倾岩质边坡地震动力响应振动台试验研究. 铁道建筑. 2021(04): 93-96 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return