Citation: | HUANG Mao-song, TONG Sen-jie, SHI Zhen-hao, LÜ Xi-lin. Prediction initiation of static liquefaction of saturated sand under complex stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 19-26. DOI: 10.11779/CJGE202101002 |
[1] |
SLADEN J A, DHOLLANDER R D, KRAHN J. Back analysis of the Nerlerk berm liquefaction slides[J]. Canadian Geotechnical Journal, 1985, 22(4): 579-588. doi: 10.1139/t85-077
|
[2] |
ZENG S, LU X L, HUANG M S. Discrete element modeling of static liquefaction of shield tunnel face in saturated sand[J]. Acta Geotechnica, 2019, 14: 1643-1652. doi: 10.1007/s11440-019-00806-w
|
[3] |
黄茂松, 李学丰, 钱建固. 各向异性砂土的应变局部化分析[J]. 岩土工程学报, 2012, 34(10): 1885-1892. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201210004.htm
HUANG Mao-song, LI Xue-feng, QIAN Jian-gu. Strain localization of anisotropic sands[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1885-1892. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201210004.htm
|
[4] |
黄茂松, 曲勰, 吕玺琳. 基于状态相关本构模型的松砂静态液化失稳数值分析[J]. 岩石力学与工程学报, 2014, 33(7): 1479-1487. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407021.htm
HUANG Mao-song, QU Xie, LÜ Xi-lin. Instability and static liquefaction analysis of loose sands with a state-dependent constitutive model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1479-1487. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407021.htm
|
[5] |
MROZ Z, BOUKPETI N, DRESCHER A. Constitutive model for static liquefaction[J]. International Journal of Geomechanics, 2003, 3(2): 133-144. doi: 10.1061/(ASCE)1532-3641(2003)3:2(133)
|
[6] |
吕玺琳, 赖海波, 黄茂松. 饱和土体静态液化失稳理论预测[J]. 岩土力学, 2014, 35(5): 1330-1333, 1339. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405018.htm
LÜ Xi-lin, LAI Hai-bo, HUANG Mao-song. Theoretically predicting instability of static liquefaction of saturated soils[J]. Rock and Soil Mechanics, 2014, 35(5): 1330-1333, 1339. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405018.htm
|
[7] |
ANDRADE J E. A predictive framework for liquefaction instability[J]. Géotechnique, 2009, 59(8): 673-682. doi: 10.1680/geot.7.00087
|
[8] |
LASHKARI A. Prediction of flow liquefaction instability of clean and silty sands[J]. Acta Geotechnica, 2016, 11(5): 987-1014. doi: 10.1007/s11440-015-0413-9
|
[9] |
BUSCARNERA G, DATTOLA G, DI PRISCO C. Controllability, uniqueness and existence of the incremental response: A mathematical criterion for elastoplastic constitutive laws[J]. International Journal of Solids and Structures, 2011, 48(13): 1867-1878. doi: 10.1016/j.ijsolstr.2011.02.016
|
[10] |
NOVA R. Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes[J]. Journal of the Mechanical Behavior of Materials, 1994, 5(2): 193-202. doi: 10.1515/JMBM.1994.5.2.193
|
[11] |
BUSCARNERA G, WHITTLE A J. Model prediction of static liquefaction: influence of the initial state on potential instabilities[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(3): 420-432. doi: 10.1061/(ASCE)GT.1943-5606.0000779
|
[12] |
WANATOWSKI D, CHU J. Static liquefaction of sand in plane strain[J]. Canadian Geotechnical Journal, 2007, 44(3): 299-313. doi: 10.1139/t06-078
|
[13] |
YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998, 38(3): 179-188. doi: 10.3208/sandf.38.3_179
|
[14] |
吕玺琳, 钱建固, 黄茂松. 不排水加载条件下K0固结饱和砂土失稳预测[J]. 岩土工程学报, 2015, 37(6): 1010-1015. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506007.htm
LÜ Xi-lin, QIAN Jian-gu, HUANG Mao-song. Prediction of instability of K0-consolidated saturated sands under undrained loading conditions[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1010-1015. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506007.htm
|
[15] |
LÜ X L, HUANG M S. Static liquefaction of sands under isotropically and K0-consolidated undrained triaxial conditions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(1): 04014087. doi: 10.1061/(ASCE)GT.1943-5606.0001206
|
[16] |
LÜ X L, HUANG M S, ANDRADE J E. Predicting the initiation of static liquefaction of cross-anisotropic sands under multiaxial stress conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(17): 1724-1740. doi: 10.1002/nag.2697
|
[17] |
陈洲泉, 黄茂松. 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报, 2018, 40(2): 243-251. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802005.htm
CHEN Zhou-quan, HUANG Mao-song. Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 243-251 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802005.htm
|
[18] |
PAPADIMITRIOU A G, BOUCKOVALAS G D. Plasticity model for sand under small and large cyclic strains: A multiaxial formulation[J]. Soil Dynamics and Earthquake Engineering, 2002, 22: 194-204.
|
[19] |
LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868-880. doi: 10.1061/(ASCE)1090-0241(2002)128:10(868)
|
[20] |
ODA M, NAKAYAMA H. Introduction of inherent anisotropy of soil in the yield function[C]//Micromechanics of Granular Materials, 1988, Amsterdam: 81-89.
|
[21] |
YANG Z X, LI X S, YANG J. Quantifying and modelling fabric anisotropy of granular soils[J]. Géotechnique, 2008, 58(4): 237-248. doi: 10.1680/geot.2008.58.4.237
|
[22] |
VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91.
|
[23] |
BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112.
|
[24] |
HILL R. A general theory of uniqueness and stability in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1958, 6(3): 236-249.
|
[25] |
LADE P V. Static instability and liquefaction of loose fine sandy slopes[J]. Journal of Geotechnical Engineering, 1992, 118(1): 51-71.
|
[26] |
LÜ X L, HUANG M S, ANDRADE J E. Modeling the static liquefaction of unsaturated sand containing gas bubbles[J]. Soils and Foundations, 2018, 58(1): 122-133.
|
[27] |
ANDEADE J E. A predictive framework for liquefaction instability[J]. Géotechnique, 2009, 59(8): 673-682.
|
[28] |
LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
|
1. |
王怀强,李孝波,王天虎,席书衡,宣雨童. 基于岩土竖向台阵开展场地地震反应研究的若干进展. 地震工程与工程振动. 2025(02): 50-63 .
![]() | |
2. |
范宏飞,王彦臻,陈炜昀,陈国兴,赵凯. 水平成层海床场地非线性地震反应的流-固弱耦合分析. 振动工程学报. 2025(04): 849-859 .
![]() | |
3. |
郭云峰. 岩土勘察中地震效应问题的研究. 科技与创新. 2023(13): 117-119+122 .
![]() | |
4. |
王永光,梁建文,巴振宁. 基于修正阻尼的土体非线性模型及其在Abaqus中的实现. 岩土力学. 2023(08): 2287-2296 .
![]() | |
5. |
陈国兴,夏高旭,王彦臻,金丹丹. 琼州海峡海床地震反应特性的一维非线性分析. 工程力学. 2022(05): 75-85 .
![]() | |
6. |
赵凯,夏高旭,王彦臻,赵丁凤,庄海洋,陈国兴. 土–地下结构相互作用的三维弱耦合有效应力分析法. 岩土工程学报. 2022(05): 861-869 .
![]() | |
7. |
阮滨,吉瀚文,王苏阳,贺鸿俊,苗雨. 基于台阵观测的基岩地震动入射波分离方法及数值验证. 岩土力学. 2022(09): 2615-2623+2642 .
![]() | |
8. |
陈伟庚,刘洋,王栋,岳茂,张良. 西南山区铁路沿线反倾岩质边坡地震动力响应振动台试验研究. 铁道建筑. 2021(04): 93-96 .
![]() |