• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XUE Peng, ZHOU Xian-qi, CAI Yan-yan, MA Lin-jian, LIAO Ren-guo, YU Jin. Triaxial creep characteristics and empirical model for saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 255-260. DOI: 10.11779/CJGE2020S2045
Citation: XUE Peng, ZHOU Xian-qi, CAI Yan-yan, MA Lin-jian, LIAO Ren-guo, YU Jin. Triaxial creep characteristics and empirical model for saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 255-260. DOI: 10.11779/CJGE2020S2045

Triaxial creep characteristics and empirical model for saturated coral sand

More Information
  • Received Date: August 06, 2020
  • Available Online: December 07, 2022
  • The riaxial drainage creep tests are performed on saturated coral sand under different cell pressures and deviator stress levels. The results show that the cell pressure and deviator stress have significant effects on creep deformation. The specific performance is that when the deviator stress is large or the cell pressure is small, the creep deformation is large, and the creep phenomenon is obvious. The traditional Singh-Mitchell and Mesri creep models are used to describe the creep characteristics of coral sand. It is found that the calculated results of the two models are quite different from the test results under high deviator stress conditions, which cannot accurately describe the creep behavior of the coral sand. By analyzing the reasons for the large error between the model and the test results, the stress-strain and strain-time relationships are expressed by hyperbolic functions, and a new creep model is established. The predicted results of the new model are in good agreement with the test results.
  • [1]
    叶剑红, 曹梦, 李刚. 中国南海吹填岛礁原状钙质砂蠕变特征初探[J]. 岩石力学与工程学报, 2019, 38(6): 1242-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906015.htm

    YE Jian-hong, CAO Meng, LI Gang. A preliminary study on the creep characteristics of the undisturbed calcareous sand of the reclamation islands and reefs in the South China Sea[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1242-1251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906015.htm
    [2]
    彭宇, 丁选明, 肖杨, 等. 基于染色标定与图像颗粒分割的钙质砂颗粒破碎特性研究[J]. 岩土力学, 2019, 40(7): 2663-2672. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907020.htm

    PENG Yu, DING Xuan-ming, XIAO Yang, et al. Research on the breaking characteristics of calcareous sand particles based on dyeing calibration and image particle segmentation[J]. Rock and Soil Mechanics, 2019, 40(7): 2663-2672. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907020.htm
    [3]
    黄宏翔, 陈育民, 王建平, 等. 钙质砂抗剪强度特性的环剪试验[J]. 岩土力学, 2018, 39(6): 2082-2088. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806021.htm

    HUANG Hong-xiang, CHEN Yu-min, WANG Jian-ping, et al. Annular shear test on the shear strength characteristics of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(6): 2082-2088. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806021.htm
    [4]
    朱长歧, 陈海洋, 孟庆山, 等. 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014, 35(7): 1831-1836. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407003.htm

    ZHU Chang-qi, CHEN Hai-yang, MENG Qing-shan, et al. Analysis of the structural characteristics of pores in calcareous sand particles[J]. Rock and Soil Mechanics, 2014, 35(7): 1831-1836. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407003.htm
    [5]
    袁庆盟, 孔亮, 赵亚鹏. 考虑水合物填充和胶结效应的深海能源土弹塑性本构模型[J]. 岩土力学, 2020, 41(7): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007017.htm

    YUAN Qing-meng, KONG Liang, ZHAO Ya-peng. Elastoplastic constitutive model of deep-sea energy soil considering hydrate filling and cementing effect[J]. Rock and Soil Mechanics, 2020, 41(7): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007017.htm
    [6]
    YAO Yang-ping, LIU Lin, LUO Ting, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343.
    [7]
    王艳芳, 蔡正银, 蔡燕燕, 等. 饱和土排水蠕变特性对比研究[J]. 应用基础与工程科学学报, 2017, 25(5): 985-997. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201705010.htm

    WANG Yan-fang, CAI Zheng-yin, CAI Yan-yan, et al. Comparative study on the creep characteristics of saturated soil drainage[J]. Journal of Applied Basic and Engineering Sciences, 2017, 25(5): 985-997. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201705010.htm
    [8]
    王艳芳, 蔡燕燕, 蔡正银. 饱和砂土蠕变特性实验[J]. 华侨大学学报(自然科学版), 2017, 38(1): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-HQDB201701006.htm

    WANG Yan-fang, CAI Yan-yan, CAI Zheng-yin. Experiment on the creep characteristics of saturated sand[J]. Journal of Huaqiao University (Natural Science Edition), 2017, 38(1): 31-37. (Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HQDB201701006.htm
    [9]
    YIN J H, GRAHAM J. Elastic visco-plastic modeling of one-dimensional consolidation[J]. Géotechnique, 1996, 46: 515-527.
    [10]
    殷建华. 等效时间和岩土材料的弹黏塑性模型[J]. 岩石力学与工程学报, 1999, 18(2): 124-128.

    YIN Jian-hua. Equivalent time and elasto-viscoplastic model of geotechnical materials[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2): 124-128. (in Chinese)
    [11]
    袁静, 龚晓南, 益德清. 岩土流变模型的比较研究[J]. 岩石力学与工程学报, 2001, 20(6): 772-779. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200106004.htm

    YUAN Jing, GONG Xiao-nan, YI De-qing. Comparative research on rheological model of rock and soil[J]. Journal of Rock Mechanics and Engineering, 2001, 20(6): 772-779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200106004.htm
    [12]
    张先伟, 王常明. 饱和软土的经验型蠕变模型[J]. 中南大学学报(自然科学版), 2011, 42(3): 791-796. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201103037.htm

    ZHANG Xian-wei, WANG Chang-ming. Empirical creep model of saturated soft soil[J]. Journal of Central South University (Natural Science Edition), 2011, 42(3): 791-796. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201103037.htm
    [13]
    SINGH A, MITCHELL J K. General stress-strain-time function for clay[J]. Journal of the Clay Mechanics and Foundation Division, 1968, 94(SM1): 21-46.
    [14]
    MESRI G, REBRES-CORDERO E, SHIELDS D R, et al. Shear stress-strain-time behaviour of clays[J]. Géotechnique, 1981, 31: 537-552.
    [15]
    LIN H D, WANG C C. Stress-strain-time function of clay[J]. Journal of Geotechnical and Geoenviromental Engineering, 1998, 124(4): 289-296.
    [16]
    王常明, 王清, 张淑华. 滨海软土蠕变特性及蠕变模型[J]. 岩石力学与工程学报, 2004, 23(2): 227-230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200402009.htm

    WANG Chang-ming, WANG Qing, ZHANG Shu-hua. Creep characteristics and creep model of coastal soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(2): 227-230. (Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200402009.htm
    [17]
    卢萍珍, 曾静, 盛谦. 软黏土蠕变试验及其经验模型研究[J]. 岩土力学, 2008, 29(4): 1041-1044, 1052. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200804038.htm

    LU Ping-zhen, ZENG Jing, SHENG Qian. Research on creep test of soft clay and its empirical model[J]. Rock and Soil Mechanics, 2008, 29(4): 1041-1044, 1052. (Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200804038.htm
    [18]
    LADE P V, CARL D, LIGGIO J, et al. Strain rate, creep, and stress drop-creep experiments on crushed coral sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(7): 941-953.
    [19]
    LADE P V. Creep, stress relaxation, and rate effects in sand[C]//Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, 2009, Alexandria.
    [20]
    LÜ Y R, LI F, LIU Y W, et al. Comparative study of coral sand and silica sand in creep under general stress states[J]. Canadian Geotechnical Journal, 2017, 54(11): 1601-1611.
    [21]
    张小燕, 蔡燕燕, 王振波, 等. 珊瑚砂高压力下一维蠕变分形破碎及颗粒形状分析[J]. 岩土力学, 2018, 39(5): 1573-1580. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805004.htm

    ZHANG Xiao-yan, CAI Yan-yan, WANG Zhen-bo, et al. One-dimensional creep fractal fracture and particle shape analysis of coral sand under high pressure[J]. Rock and Soil Mechanics, 2018, 39(5): 1573-1580. (Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805004.htm
  • Cited by

    Periodical cited type(10)

    1. 张盛行,汤雷,朱春光,石蓝星,明攀. 瞬变电磁探测土质堤坝渗漏病害的正演模拟与工程应用. 水利水电技术(中英文). 2025(S1): 392-397 .
    2. 施晓萍,周柏兵,郭庆鑫,李家群. 机载激光雷达在堤防隐患巡查试验中的应用. 水利发展研究. 2024(01): 86-93 .
    3. 黄曙光. 英德庄洲防洪堤水毁应急抢险修复策略. 云南水力发电. 2024(03): 99-102 .
    4. 涂建伟,蒋德成,崔家仲,何孟芸,贾刚. 面向岸堤坍塌全过程的应急防护措施与装置. 人民长江. 2024(04): 200-206 .
    5. 薛凯喜,李明吉,曹凯,胡艳香. 鄱阳湖圩堤管涌险情分析与防治措施. 河北工程大学学报(自然科学版). 2024(02): 95-104 .
    6. 高玉峰,王玉杰,张飞,姬建,陈亮,倪钧钧,张卫杰,宋健,杨尚川. 边坡工程与堤坝工程研究进展. 土木工程学报. 2024(08): 97-118 .
    7. 陈昱行,高至飞,胡朝鹏,宋国策. 基于无人机多模态数据的铁路防洪隐患排查系统研发. 铁道勘察. 2024(05): 156-162 .
    8. 蒋水华,陈颖霞,熊威,李彧玮,常志璐,李锦辉,李文欢. 堤防工程险情风险评估与管控研究进展. 人民珠江. 2024(11): 1-13 .
    9. 刘阳,涂善波,李亚楠. 双线盾构隧道穿越影响下的黄河堤防沉降监测研究. 陕西水利. 2023(10): 135-138 .
    10. 涂善波,刘阳. 基于多源监测技术的穿黄隧道堤防安全影响评价. 水科学与工程技术. 2023(05): 73-76 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return