• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Hong-yang, LUO Qiang, XIAO Jin-feng, ZHOU Xin, LI Yue. Tests on horizontal residual stresses of compacted clay and sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 231-237. DOI: 10.11779/CJGE2020S2041
Citation: LIU Hong-yang, LUO Qiang, XIAO Jin-feng, ZHOU Xin, LI Yue. Tests on horizontal residual stresses of compacted clay and sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 231-237. DOI: 10.11779/CJGE2020S2041

Tests on horizontal residual stresses of compacted clay and sand

More Information
  • Received Date: August 06, 2020
  • Available Online: December 07, 2022
  • Due to friction and biting between soil particles, residual stress will be generated after compaction. A set of horizontal residual stress testing device for compacted soils is designed and processed, which includes preparation of soil samples and loading. An experimental study is developed on the variation of the horizontal residual stresses of silt clay and sand with water content and compaction density. Then the horizontal residual stress characteristics of two typical roadbed filling are compared. Based on the Mohr-Coulomb criterion, a method for estimating the horizontal residual stress of compacted soil is proposed, which takes the characteristic components of shear capacity of soils cm and φf as the core parameters. Finally, an error analysis is performed on the estimated results. The research shows that the compacted silty clay samples have a strong frictional locking effect between particles. The horizontal residual stress decreases approximately linearly with the increasing water content and shows a trend of increasing polyline acceleration with the increase of compaction. The sand samples prepared by the vibration compaction method have a small contact force between the particles, but their horizontal residual stress increases significantly after loading and unloading static loads, and it increases approximately linearly with the increase of water content and relative density. The horizontal residual stress of the compacted silty clay is significantly greater than that of the uniformly graded sand. According to the proposed analytical model, the estimated values obtained are in good agreement with the test ones, the average error of the silty clay samples is about 6.30%, and that of the sand is about 17.80%.
  • [1]
    米谷茂. 残余应力的产生和对策[M]. 朱荆璞, 邵会孟,译.北京: 机械工业出版社, 1983.

    MI Gu-mao. Generation and Countermeasures of Residual Stress[M]. ZHU Jing-pu, SHAO Hui-meng, trans. Beijing: Mechanical Industry Press, 1983. (in Chinese)
    [2]
    袁静, 龚晓南. 基坑开挖过程中软土性状若干问题的分析[J]. 浙江大学学报(工学版), 2001, 35(5): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200105000.htm

    YUAN Jing, GONG Xiao-nan. Analysis of soft clay during excavation[J]. Journal of Zhejiang University (Engineering Science), 2001, 35(5): 3-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200105000.htm
    [3]
    JIANG M, YIN Z. Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete element method[J]. Tunneling and Underground Space Technology, 2012, 32: 251-259. doi: 10.1016/j.tust.2012.06.001
    [4]
    MOMOYA Y, SEKINE E, TATSUOKA F. Deformation characteristics of railway roadbed and subgrade under moving-wheel load[J]. Soils and Foundations, 2005, 45(4): 99-118. doi: 10.3208/sandf.45.4_99
    [5]
    MULLIS C H Jr. A Study of The Residual Lateral Pressures Induced in A Cohesionless Soil[D]. Atlanta: Georgia Institute of Technology, 1956.
    [6]
    INGOLD T S. The effects of compaction on retaining walls[J]. Géotechnique, 1979, 29(3): 265-283. doi: 10.1680/geot.1979.29.3.265
    [7]
    孙玉永, 周顺华, 庄丽. 考虑残余应力的基坑被动区土压力及强度计算[J]. 土木工程学报, 2011, 44(9): 94-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201109012.htm

    SUN Yu-yong, ZHOU Shun-hua, ZHUANG Li. Calculation of passive earth pressure and shear strength in foundation pits considering residual stress[J]. China Civil Engineering Journal, 2011, 44(9): 94-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201109012.htm
    [8]
    周顺华. 地下工程开挖问题计算方法的再认识[J]. 科学通报, 2019, 64(25): 2608-2616. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201925008.htm

    ZHOU Shun-hua. Rethinking of the calculation method of excavation issues in underground engineering[J]. Chinese Science Bulletin, 2019, 64(25): 2608-2616. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201925008.htm
    [9]
    刘宏扬, 罗强, 周鑫, 等. 侧限条件下路基压实黏土的水平残余应力试验分析[J]. 实验力学, 2020, 35(3): 441-450. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX202003008.htm

    LIU Hong-yang, LUO Qiang, ZHOU Xin, et al. Experimental analysis of horizontal residual stress of subgrade compacted clay under confined condition[J]. Journal of Experimental Mechanics, 2020, 35(3): 441-450. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX202003008.htm
    [10]
    周健, 王冠英, 贾敏才. 无填料振冲法的现状及最新技术进展[J]. 岩土力学, 2008, 29(1): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801009.htm

    ZHOU Jian, WANG Guan-ying, JIA Min-cai. Situation and latest technical progress of vibroflotation without additional backfill treatment[J]. Rock and Soil Mechanics, 2008, 29(1): 37-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801009.htm
    [11]
    张嘎, 张建民. 基于瑞典条分法的应变软化边坡稳定性评价方法[J]. 岩土力学, 2007, 28(1): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200701003.htm

    ZHANG Ga, ZHANG Jian-min. Stability evaluation of strain-softening slope based on Swedish slice method[J]. Rock and Soil Mechanics, 2007, 28(1): 12-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200701003.htm
  • Related Articles

    [1]JI En-yue, CHEN Sheng-shui, ZHU Jun-gao, FU Zhong-zhi. Experimental research on tensile strength of gravelly soil under different gravel contents[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1339-1344. DOI: 10.11779/CJGE201907019
    [2]LING Hua, WANG Wei, WANG Fang, FU Hua, HAN Hua-qiang. Experimental study on hydraulic fracture of gravelly soil core[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1444-1448. DOI: 10.11779/CJGE201808009
    [3]CHEN Qun, DUAN Bo. Filter criteria for gravelly clayey soils with cracks[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1802-1807. DOI: 10.11779/CJGE201410006
    [4]CHEN Liang, ZHANG Hong-yu, LEI Wen, LIANG Yue, JI Chun-bo, WANG Chen-long. Piping and non-uniform permeability development of cohesionless soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1432-1439.
    [5]CHU Cheng-fu, LI Xiao-chun, LU Li-hao, XI Pei-sheng. Load bearing behavior of pile tip post-grouting super-long large-diameter bored piles in cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 388-391.
    [6]Lü Xi-lin, HUANG Mao-song, QIAN Jian-gu. Three-dimensional strength criterion for layered-anisotropic cohesionless soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 945.
    [7]ZHAO Zhengxin, CHEN Jiansheng, CHEN Liang. Application of BP neural network to assessment of noncohesive piping-typed soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 536-540.
    [8]LUO Sihai, GONG Xiaonan. Quasi-static analysis for quantitative estimation of improvement effect of cohesionless soil treated by dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 480-486.
    [9]CAI Zhengyin, LI Xiangsong. Formation of shear band in cohesionless soils[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 129-134.
    [10]Liu Jie, Zhang Xiong. Study  on  Filter  Design  of  Broadly-Graded  Soil[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(6): 5-13.
  • Cited by

    Periodical cited type(6)

    1. 蒋承辉. 基于BOTDA的光纤位移传感器在建筑基坑沉降监测中的实验研究. 企业科技与发展. 2025(01): 98-101 .
    2. 吴哲辉,何宁,姜彦彬,孔洋,槐伟. 堆石坝内部二维变形一体化分布式监测技术试验研究. 水利信息化. 2025(02): 56-63 .
    3. 管翰林,蒋陵,王驭扬,张灿. 基于DOFS技术的电力光缆多维度故障预警研究. 电力电子技术. 2025(05): 78-81+105 .
    4. 赵建勋,高冰,高丽娟. 分布式光纤传感技术下架空输变电线路监测. 电子设计工程. 2025(11): 72-76 .
    5. 黄惇汉. 基于分布式光纤传感技术的车辆撞击道路护栏检测研究. 运输经理世界. 2024(22): 122-124 .
    6. 马刚,艾志涛,郭承乾,李少林,陈华,周伟. 高土石坝变形监测研究进展. 水利学报. 2024(10): 1174-1186 .

    Other cited types(0)

Catalog

    Article views (201) PDF downloads (66) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return