• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
BO Ying-jun, WANG Hua-ning, JIANG Ming-jing. Cracking mechanism of deep jointed rock mass induced by transient excavation via DEM[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 196-201. DOI: 10.11779/CJGE2020S2035
Citation: BO Ying-jun, WANG Hua-ning, JIANG Ming-jing. Cracking mechanism of deep jointed rock mass induced by transient excavation via DEM[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 196-201. DOI: 10.11779/CJGE2020S2035

Cracking mechanism of deep jointed rock mass induced by transient excavation via DEM

More Information
  • Received Date: August 06, 2020
  • Available Online: December 07, 2022
  • For the excavation of rock mass under high stress, the defects of the rock mass and the dynamic effects induced by the excavation have a great impact on the damage of the surrounding rock. The distribution of joints is simplified and quantified. Based on the two-dimensional discrete element method, the process of excavation of rock masses with non-persistent joints is simulated. The macro-and micro-dynamic failure modes of the rock mass under different connectivity rates and the dynamic response near the joint are studied. The results show that after considering the dynamic effect, the range and degree of damage increase significantly. The dynamic model is more likely to produce wing crack coalescence under high connectivity. The joint amplifies the dynamic effect at the rock bridge center and acts as a cushion to absorb the shock behind the joint, but the rock mass before the joint will be affected by the reflected stress waves.
  • [1]
    钱七虎. 岩爆、冲击地压的定义、机制、分类及其定量预测模型[J]. 岩土力学, 2014, 35(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401001.htm

    QIAN Qi-hu. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump Rock and Soil Mechanics[J]. Rock and Soil Mechanics, 2014, 35(1): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401001.htm
    [2]
    SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocks around underground workings, Part 1: data of in situ observations[J]. Soviet Mining, 1986, 22(3): 157-168. doi: 10.1007/BF02500863
    [3]
    MIKLOWITZ J. Plane-stress unloading waves emanating from a suddenly punched hole in a stretched elastic plate[J]. Journal of Applied Mechanics, 1960, 27(1): 165-171. doi: 10.1115/1.3643892
    [4]
    CAI M. Influence of stress path on tunnel excavation response: Numerical tool selection and modeling strategy[J]. Tunnelling and Underground Space Technology, 2008, 23(6): 618-628. doi: 10.1016/j.tust.2007.11.005
    [5]
    LI X, CAO W, ZHOU Z, et al. Influence of stress path on excavation unloading response[J]. Tunnelling and Underground Space Technology, 2014, 42: 237-246. doi: 10.1016/j.tust.2014.03.002
    [6]
    FAN Y, LU W B, YAN P, et al. Transient characters of energy changes induced by blasting excavation of deep-buried tunnels[J]. Tunnelling and Underground Space Technology, 2015, 49: 9-17. doi: 10.1016/j.tust.2015.04.003
    [7]
    CHEN M, LU W B, YAN P, et al. Blasting excavation induced damage of surrounding rock masses in deep-buried tunnels[J]. KSCE Journal of Civil Engineering, 2016, 20(2): 933-942. doi: 10.1007/s12205-015-0480-3
    [8]
    YAN P, LU W, CHEN M, et al. Contributions of in-situ stress transient redistribution to blasting excavation damage zone of deep tunnels[J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 715-726. doi: 10.1007/s00603-014-0571-3
    [9]
    谢和平, 高峰, 鞠杨, 等. 深部开采的定量界定与分析[J]. 煤炭学报, 2015, 40(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201501001.htm

    XIE He-ping, GAO Feng, JU Yang, et al. Quantitative definition and investigation of deep mining[J]. Journal of China Coal Society, 2015, 40(1): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201501001.htm
    [10]
    蒋明镜, 金树楼, 张宁. 不同胶结尺寸的粒间胶结强度统一表达式[J]. 岩土力学, 2015, 36(9): 2451-2457, 2466. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509004.htm

    JIANG Ming-jing, JIN Shu-lou, ZHANG Ning. Unified expression for bonding strength of cemented granules with different bond sizes[J]. Rock and Soil Mechanics, 2015, 36(9): 2451-2457, 2466. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509004.htm
    [11]
    IVARSD MPOTYONDYDPIERCEMThe smooth-joint contact model8th World Congress on Computational Mechanics 5th European Congress on Computational Methods in Applied Sciences and Engineering200823

    IVARS D M, POTYONDY D, PIERCE M, et al. The smooth-joint contact model[J]. 8th World Congress on Computational Mechanics 5th European Congress on Computational Methods in Applied Sciences and Engineering, 2008: 2-3.

    [12]
    苏鹏. 砂岩、花岗岩阻尼特性及机制的试验研究[D]. 西安: 西安理工大学, 2017.

    SU Peng. Experimental Study on Damping Characteristic and Mechanism of Sandstone and Granite[D]. Xi'an: Xi'an University of Technology, 2017. (in Chinese)
    [13]
    邹航, 刘建锋, 边宇, 等. 不同粒度砂岩力学和渗透特性试验研究[J]. 岩土工程学报, 2015, 37(8): 1462-1468. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201508020.htm

    ZOU Hang, LIU Jian-feng, BIAN Yu, et al. Experimental study on mechanical and permeability properties of sandstone with different granularities[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1462-1468. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201508020.htm
    [14]
    TAN Y L, NING J G, LI H T. In situ explorations on zonal disintegration of roof strata in deep coalmines[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 49: 113-124. doi: 10.1016/j.ijrmms.2011.11.015
    [15]
    WANG J J, LI Y Q, JIAN F X, et al. Rate dependence of splitting tensile behaviors of sandstone and mudstone[J]. Geotechnical and Geological Engineering, 2019, 37(4): 3469-3475. doi: 10.1007/s10706-018-00797-7
    [16]
    JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8
    [17]
    BAUD P, MEREDITH P, TOWNEND E. Permeability evolution during triaxial compaction of an anisotropic porous sandstone: Permeability Evolution in Sandstone[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B5): 5023.
    [18]
    ZHOU X, SHENG Q, CUI Z. Dynamic boundary setting for discrete element method considering the seismic problems of rock masses[J]. Granular Matter, 2019, 21(3): 66.
  • Cited by

    Periodical cited type(10)

    1. 王军,朱传根,李勋,王波,张艺腾. 类岩石试件三轴扰动破坏特性试验研究. 采矿与岩层控制工程学报. 2024(02): 15-28 .
    2. 王世鸣,白云帆,王嘉琪,吴秋红. 应力波斜入射下砂岩层裂破坏的试验研究. 振动与冲击. 2024(14): 201-210 .
    3. 杨阳,杨仁树,陈骏,方士正,李炜煜,范子儀,张祥,朱锐,张渊通,杨欢,王雁冰. 岩石爆破基础理论研究进展与展望Ⅰ—本构关系. 工程科学学报. 2024(11): 1931-1947 .
    4. 王磊,陈礼鹏,刘怀谦,朱传奇,李少波,范浩,张帅,王安铖. 不同初始瓦斯压力下煤体动力学特性及其劣化特征. 岩土力学. 2023(01): 144-158 .
    5. 李晓照,张骐烁,柴博聪,戚承志. 动力损伤后的脆性岩石静力蠕变断裂模型研究. 力学学报. 2023(04): 903-914 .
    6. 王世鸣,王嘉琪,熊咸瑞,陈正红,桂易林,周健. 斜入射波扰动对岩石层裂的影响(英文). Journal of Central South University. 2023(06): 1981-1992 .
    7. 肖军华,白英琦,张骁,刘志勇,王炳龙. 考虑应力波透反射作用的分层颗粒材料细观动力响应分析. 力学季刊. 2023(03): 620-632 .
    8. 陈绍杰,冯帆,李夕兵,王成,李地元,ROSTAMI Jamal,朱泉企. 复杂开采条件下深部硬岩板裂化破坏试验与模拟研究进展和关键问题. 中国矿业大学学报. 2023(05): 868-888 .
    9. 李学文,邓凯萱. 高压水射流破除混凝土研究现状及展望. 广东建材. 2022(10): 16-20 .
    10. 常聚才,齐潮,殷志强,史文豹,贺凯,吴昊原. 动载作用下端锚锚固体力学响应特征研究. 岩土力学. 2022(12): 3294-3304 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return