• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAI Xin, JIANG Min-min, SHAN Yan-gong, YANG Jie, YANG An-yu, GUO Xing-wen. Mechanical behaviors of cemented sand and gravel materials based on triaxial tests during unloading and reloading[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 190-195. DOI: 10.11779/CJGE2020S2034
Citation: CAI Xin, JIANG Min-min, SHAN Yan-gong, YANG Jie, YANG An-yu, GUO Xing-wen. Mechanical behaviors of cemented sand and gravel materials based on triaxial tests during unloading and reloading[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 190-195. DOI: 10.11779/CJGE2020S2034

Mechanical behaviors of cemented sand and gravel materials based on triaxial tests during unloading and reloading

More Information
  • Received Date: August 31, 2020
  • Available Online: December 07, 2022
  • Understanding the mechanical behaviors of cemented sand and gravel materials during unloading and reloading in the context of the unloading and reloading paths can help enhance the accuracy of predicting the stress and deformation of cemented sand and gravel dams during reservoir storage and discharge. To this end, a large shear triaxial instrument is used to conduct the triaxial unloading and reloading tests on the cemented sand and gravel materials under different confining pressures and stress levels with a cemented content of 100 kg/m3. The triaxial shear test results obtained under loading are systematically analyzed along with the stress and deformation of the materials obtained in the triaxial tests pertaining to the unloading and reloading paths. The results indicate that the increase in the internal friction angle and cohesive force enhances the peak strength of the cemented sand and gravel materials in the unloading and reloading paths. The stress levels do not considerably affect the unloading modulus of the materials. However, with the increase in the confining pressure, the resilient modulus first increases nonlinearly and later decreases gradually. Under different confining pressures, the ratio of the average of the resilient modulus to the initial modulus remains constant. The variation trend of the volume of the cemented sand and gravel materials at the loading stage of the triaxial unloading and reloading tests is the same as that during the loading tests, that is, it first increases and later decreases. With the increase in the same confining pressure under the stress level, the unloading carrier shrinkage of the specimen gradually changes to unloading carrier expansion. These findings may provide valuable experimental bases to construct a realistic constitutive model for cemented sand and gravel materials.
  • [1]
    LONDE P, LINO M. Hardfill Dam, The faced symmetrical hardfill dam: a new concept for RCC[J]. International Water Power & Dam Construction, 1992, 44(2): 19-24.
    [2]
    JIA J S, LINO M, JIN F, et al. The cemented material dam: a new, environmentally friendly type of dam[J]. Engineering, 2016(2): 490-497.
    [3]
    李广信, 武世锋. 土的卸载体缩的试验研究及其机理探讨[J]. 岩土工程学报, 2002, 24(1): 47-50. doi: 10.3321/j.issn:1000-4548.2002.01.010

    LI Guang-xin, WU Shi-feng. The experimental study and mechanism study of volumetric contraction after unloading of soil[J]. Chinese Journal of Geotechnial Engineering, 2002, 24(1): 47-50. (in Chinese) doi: 10.3321/j.issn:1000-4548.2002.01.010
    [4]
    李广信, 郭瑞平. 土的卸载体缩的试验研究及与可恢复剪胀[J]. 岩土工程学报, 2000, 22(2): 158-161.

    LI Guang-xin, GUO Rui-ping. The experimental study of volumetric contraction after unloading of soil and recover dilatancy[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 158-161. (in Chinese)
    [5]
    陈愈炯. 土的卸荷弹性模量[J]. 工程勘察, 1988(5): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198805001.htm

    CHEN Yu-jiong. The unloading elastic modulus of soil[J]. Engineering Investigation, 1988(5): 6-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198805001.htm
    [6]
    陈开圣, 沙爱民. 压实黄土回弹模量试验研究[J]. 岩土力学, 2010, 31(3): 748-759. doi: 10.3969/j.issn.1000-7598.2010.03.014

    CHEN Kai-sheng, SHA Ai-min. The testing research of modulus of resilience of compacted loess[J]. Rock and Soil Mechanics, 2010, 31(3): 748-759. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.03.014
    [7]
    XU Long-fei, WONG Kwai Kwan, FABBRI Antonin, et al. Loading-unloading shear behavior of rammed earth upon varying clay content and relative humidity conditions[J]. Soils and Foundations, 2018, 58: 1001-1015. doi: 10.1016/j.sandf.2018.05.005
    [8]
    褚福永, 朱俊高, 贾华, 等. 粗粒土卸载—再加载力学特性试验研究[J]. 岩土力学, 2012, 33(4): 1061-1066. doi: 10.3969/j.issn.1000-7598.2012.04.015

    CHU Fu-yong, ZHU Jun-gao, JIA Hua, et al. Experimental study of mechanical behaviour of coarse-grained soil in unloading and reloading[J]. Rock and Soil Mechanics, 2012, 33(4): 1061-1066. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.04.015
    [9]
    朱俊高, 王元龙, 贾华, 等. 粗粒土回弹特性试验研究[J]. 岩土工程学报, 2011, 33(6): 950-954. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106024.htm

    ZHU Ju-gao, WANG Yuan-long, JIA Hua, et al. Experimental study on resilience behaviour of coarse grained soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 950-954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201106024.htm
    [10]
    ZHAO Y R, YANG H Q, HUANG L P, et al. Mechanical behavior of intact completely decomposed granite soils along multi-stage loading-unloading path[J]. Engineering Geology, 2019, 260: 1-8.
    [11]
    杨贵, 孙欣, 王阳阳. 高聚物堆石料回弹特性试验[J]. 岩土力学, 2018, 39(5): 1669-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805016.htm

    YANG Gui, SUN Xin, WANG Yang-yang. Tests on resilient behaviour of polymer rockfill materials[J]. Rock and Soil Mechanics, 2018, 39(5): 1669-1674. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805016.htm
    [12]
    XU Xiang-tian, LI Qiong-lin, LAI Ying, et al. Effect of moisture content on mechanical and damage behavior of frozen loess under triaxial condition along with different confining pressures[J]. Cold Regions Science and Technology, 2019: 157: 110-118.
    [13]
    傅华, 陈生水, 韩华强, 等. 胶凝砂砾石料静、动力三轴剪切试验研究[J]. 岩土工程学报, 2015, 37(2): 357-362. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502025.htm

    FU Hua, CHEN Sheng-shui, HAN Hua-qiang, et al. Experimental study on static and dynamic properties of cemented sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 357-362. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502025.htm
    [14]
    WU M X, DU B, YAO Y C, et al. An experimental study on stress-strain behavior and constitutive model of hardfill materials[J]. Science China: Physics, Mechanics & Astronomy, 2011, 54(11): 2015-2024.
    [15]
    YANG J, CAI X, PANG Q, et al. Experimental study on the shear strength of cement sand gravel material[J]. Advances in Materials Science and Engineering, 2018, 6: 1-11.
    [16]
    YANG J, CAI X, GUO X W, et al. Effect of cement content on the deformation properties of cemented sand and gravel material[J]. Applied Sciences-Basel, 2019, 9: 1-16.
    [17]
    蔡新, 杨杰, 郭兴文, 等. 胶凝砂砾石料弹塑性本构模型研究[J]. 岩土工程学报, 2016, 38(9): 1569-1577. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609004.htm

    CAI Xin, YANG Jie, GUO Xing-wen, et al. Elastoplastic constitutive model for cement-sand-gravel material[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1569-1577. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609004.htm
    [18]
    魏匡民, 陈生水, 李国英, 等. 胶凝粗粒料的弹塑性模型与应用研究[J]. 岩土工程学报, 2019, 41(5): 797-805. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905002.htm

    WEI Kuang-min, CHEN Sheng-shui, LI Guo-ying, et al. Elastoplastic model for cemented coarse-grained materials and its application[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 797-805. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905002.htm
    [19]
    土工试验规程:SL237—1999[S]. 1999.

    Specification of Soil Test: SL237—1999[S]. 1999. (in Chinese)
    [20]
    黄虎, 黄凯, 张献才, 等. 循环荷载下胶凝砂砾石材料的滞后及阻尼效应[J]. 建筑材料学报, 2018, 21(5): 739-748. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201805008.htm

    HUANG Hu, HUANG Kai, ZHANG Xian-cai, et al. Hysteresis and damping effect of cemented sand and gravel material under cyclic loading[J]. Journal of Building Materials, 2018, 21(5): 739-748. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201805008.htm
  • Cited by

    Periodical cited type(14)

    1. 刘小锐,张晗. 盾构隧道下穿施工对严重倾斜挡墙影响及加固措施分析. 粉煤灰综合利用. 2025(01): 145-149 .
    2. 余鹏. 盾构隧道穿越在建PBA车站风险控制技术研究. 铁道标准设计. 2025(04): 148-156 .
    3. 马昭,张明礼,段旭晗,赵博. 大断面浅埋隧道地表沉降Peck修正公式及其应用. 长江科学院院报. 2024(03): 118-125 .
    4. 陈湘生,全昭熹,陈一凡,沈翔,苏栋. 极端环境隧道建造面临的主要问题及发展趋势. 隧道建设(中英文). 2024(03): 401-432 .
    5. 张子新,李小昌,李佳宇. 软土地层盾构掘进土体稳定性模型试验研究. 土木与环境工程学报(中英文). 2024(03): 41-51 .
    6. 刘彦良. 水下大直径盾构下穿施工对防汛大堤影响研究. 建筑机械. 2024(07): 142-146 .
    7. 黄震,黄侦谦,侯东祥,尤伟军,管世玉. 盾构掘进对浅基础建筑物的扰动及影响分区研究. 科技通报. 2024(07): 97-106 .
    8. 高泉平,杨硕,芮瑞,张泉,聂利文,孙天健. 邻近挡土结构隧道开挖引起地层变形的试验研究. 武汉理工大学学报. 2023(09): 75-82 .
    9. 张恒旭. 某过江隧道江心洲防洪大堤开挖对周围环境的影响分析. 工程技术研究. 2022(09): 13-17 .
    10. 王智德,武海港,杨文东,李杰,李根,刘奇. 地铁隧道近距离侧穿邻近桩基影响的试验研究. 武汉理工大学学报. 2022(06): 69-77 .
    11. 王长虹,马铖涛,吴昭欣,王昆,汤道飞. CPTU数据校准黏土和砂土统一模型本构参数的随机力学-贝叶斯方法. 土木工程学报. 2022(10): 101-116 .
    12. 董立波. 上软下硬复合地层中盾构下穿既有建筑物受力性能研究. 智能城市. 2021(04): 15-16 .
    13. 芮瑞,翟玉新,徐杨青,何清. 邻近地层损失对地下挡土结构土压力与地表沉降影响试验研究. 岩土工程学报. 2021(04): 644-652 . 本站查看
    14. 魏勇,许强,王卓,李骅锦,李松林. 动态摄影测量在物理模型实验全过程地形数据获取中的应用. 地球科学进展. 2020(10): 1087-1098 .

    Other cited types(11)

Catalog

    Article views (248) PDF downloads (107) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return