• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAI Hong, YAN Jun, WEI Ying-qi, ZHANG Shou-zhen, WU Shuai-feng, SUN Li-ming. Unsaturated infiltration characteristics and stability of fly ash dams under flood conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 157-162. DOI: 10.11779/CJGE2020S2028
Citation: CAI Hong, YAN Jun, WEI Ying-qi, ZHANG Shou-zhen, WU Shuai-feng, SUN Li-ming. Unsaturated infiltration characteristics and stability of fly ash dams under flood conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 157-162. DOI: 10.11779/CJGE2020S2028

Unsaturated infiltration characteristics and stability of fly ash dams under flood conditions

More Information
  • Received Date: August 31, 2020
  • Available Online: December 07, 2022
  • The fly ash dams in the storage field of coal-fired power plants are mostly in unsaturated state. The surface ash body experiences the change from unsaturated state to saturated one during floods, which will greatly affect the slope stability. However, the experimental researches on the unsaturated characteristics of fly ash in this process are rarely reported. A coal fly ash is chosen as the research object, and the related unsaturated infiltration test device is developed. The systematical tests are then carried out on the infiltration characteristics of a fly ash dam under different flood water-head conditions such as 1.0, 2.5, 3.3 and 5.2 m. The test results show that the average infiltration coefficient of forward edge surface for unsaturated fly ash is 1.2×10-3 cm/s, while the infiltration coefficient of saturated surface is A×10-4 cm/s level, and it is closer and closer to that of弹the forward edge surface with the increasing flood water-head. Based on this, a method for estimating the saturated area in the fly ash dam is proposed, that is, the infiltration coefficient of saturated surface under low flood water-head can be obtained from the test results, while the coefficient of forward edge surface can be used to estimate the saturated area when the flood water-head is larger than 10.0 m. The accuracy of the proposed method is verified by comparing with the numerical results. As a result, based on the stability analysis results of upstream slope of a typical fly ash dam considering flood infiltration, the analysis method based on the estimation of saturated zone can be better reflect the actual stability of the upstream slope, and the research results may provide reference for the unsaturated seepage and stability analysis of fly ash dams.
  • [1]
    CHANW H, MAZLEE M N, AHMAD Z A, et al. Effects of fly ash addition on physical properties of porous clay-fly ash composites via polymeric replica technique[J]. Journal of Material Cycles and Waste Management, 2017, 19(2): 794-803. doi: 10.1007/s10163-016-0481-4
    [2]
    KUMAR H, MISHRA M K. Optimization and evaluation of fly ash composite properties for geotechnical application[J]. Arabian Journal of Geosciences, 2015, 8(6): 3713-3726. doi: 10.1007/s12517-014-1502-z
    [3]
    丁家平. 贮灰库渗流控制及三维等参元渗流数学模型的应用[J]. 岩土工程学报, 1991, 13(4): 41-50.

    DING Jia-ping. Numerical the seepage control from ash lagoon and the application of three dimensional mathematicl engineering[J]. Chinese Journal of Geotechnical Engineering, 1988, 13(4): 41-50. (in Chinese)
    [4]
    时红, 张永波. 粉煤灰水在土壤包气带中的垂直迁移规律[J]. 水资源保护, 2007, 23(3): 30-32.

    SHI Hong, ZHANG Yong-bo. Law of vertical transfer of fly ash water in aeration zone of soil[J]. Chinese Journal of Water Resources Protection, 2007, 23(3): 30-32. (in Chinese)
    [5]
    丁家平, 徐辉, 顾国新, 等. 大型贮灰场的三维饱和-非饱和瞬变流数值模拟及非饱和参数试验[J]. 岩土工程学报, 2006, 28(2): 230-234. doi: 10.3321/j.issn:1000-4548.2006.02.017

    DING Jia-ping, XU Hui, GU Guo-xing, et al. Numerical model of three dimensional saturated-unsaturated flow for a flyash lagoon of thermal power plant[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 230-234. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.02.017
    [6]
    魏迎奇, 田继雪, 蔡红, 等. 粉煤灰的基质吸力及非饱和特性研究[J]. 水利学报, 2014, 45(增刊2): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2002.htm

    WEI Ying-qi, TIAN Ji-xue, CAI Hong, et al. Research on matrix suction and un-saturated characteristics of fly ash[J]. Chinese Journal of shuili xuebao, 2014, 45(2): 8-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2002.htm
    [7]
    饶俊勇, 彭德刚, 李模军. 基于非饱和渗流的干灰场边坡稳定分析[J]. 2017, 12(6): 1-4.

    RAO Jun-yong, PENG De-gang, LI Mo-jun. Slope stability analysis for dry ash pond based on unsaturated seepage[J]. Chinese Journal of Electric Power Survey & Design, 2017, 12(6): 1-4. (in Chinese)
    [8]
    吴宏伟, 陈守义, 庞宇威. 雨水入渗对非饱和土坡稳定性影响的参数研究[J]. 岩土力学, 1999, 20(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX901.000.htm

    WU Hong-wei, CHEN Shou-yi, PANG Yu-wei. Parametric study of effects of rain inf iltration on unsaturated slopes[J]. Chinese Journal of Rock and Soil Mechanics, 1999, 20(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX901.000.htm
    [9]
    李景娟, 谢罗峰, 段祥宝. 灰坝加高条件下渗流与应力稳定分析[J]. 中国农村水利水电, 2016(6): 177-181.

    LI Jing-juan, XIE Luo-feng, DUAN Xiang-bao. An analysis of seepage and stress stability of the ash heightened dam[J]. China Rural Water and Hydropower, 2016(6): 177-181. (in Chinese)
    [10]
    周成利, 张全红. 山谷灰场土坝坝体及坝肩渗流分析[J]. 山西电力, 2013(1): 69-72.

    ZHOU Cheng-li, ZHANG Quan-hong. The leakage analysis of the dam body and dam shoulders of the valley ash pond earth dam[J]. Shanxi Electric Power, 2013(1): 69-72. (in Chinese)
    [11]
    段涛, 张爱军, 李大可, 等. 基于Underflow-3D的灰坝渗流计算[J]. 人民黄河, 2009, 31(4): 111-113.

    DUAN Tao, ZHANG Ai-jun, LI Da-ke, et al. Seepage analysis of fly ash dam based on Underflow-3D[J]. Yellow River, 2009, 31(4): 111-113. (in Chinese)
    [12]
    金梅玉. 发电厂贮灰场坝体的渗流及稳定性的研究[J]. 内蒙古电大学刊, 2009(1): 69-70, 84.

    JIN Mei-yu. Seepage and stability study of dam body of ash storage field in power plant[J]. Journal of Inner Mongolia RAD & TV University, 2009(1): 69-70, 84. (in Chinese)
    [13]
    陈宇棠, 李广杰, 夏广卿. 吉林热电厂贮灰场坝体渗流分析[J]. 山西建筑, 2007(28): 17-18.

    CHEN Yu-tang, LI Guang-jie, XIA Guang-qing. Seepage analysis of ash storage dam of Jilin thermal power plant[J]. Ahanxi Architecture, 2007(28): 17-18. (in Chinese)
    [14]
    罗启北, 张艳霞, 刘东波. 贮灰场渗流分析及ANSYS二次开发技术研究与应用[J]. 水力发电学报, 2007(3): 115-119.

    LUO Qi-bei, ZHANG Yan-xia, LIU Dong-bo. Seepage analysis of ash disposal area and further development technique of ANSYS[J]. Journal of Hydroelectric Engineering, 2007(3): 115-119. (in Chinese)
    [15]
    金生, 耿艳芬, 王志力. 利用饱和-非饱和渗流模型计算坝体自由面渗流[J]. 大连理工大学学报, 2004(1): 110-113.

    JIN Sheng, GENG Yan-fen, WANG Zhi-li. Computation of seepage flow of dam's free surface by using saturated unsaturated model[J]. Journal of Dalian University of Technology, 2004(1): 110-113. (in Chinese)
  • Cited by

    Periodical cited type(37)

    1. 张昌桔,姚言,应宏伟,李冰河. 粉土地层双线平行顶管地面沉降及注浆压力数值研究. 地基处理. 2025(01): 60-68 .
    2. 王伟志,刘文壮,李朝煌,徐永福. 软土中浅埋顶管施工变形监测分析. 徐州工程学院学报(自然科学版). 2025(01): 1-6 .
    3. 张艳辉,纪海霞,程树辉,李张卿. 高密度建成区大型雨水管涵设计要点分析. 市政技术. 2025(04): 197-203 .
    4. 王开军,张伟,王玮鹏,窦保洋,徐荣超. 超浅覆土大断面矩形顶管近距离双线施工地表沉降规律及加固效果评价. 地质与勘探. 2024(01): 121-131 .
    5. 付增,范晓冬,魏旭鹏,李鹏,余长益. 基于结构分割法的顶管暗挖地铁站建造技术. 都市快轨交通. 2024(04): 88-95 .
    6. 万海峰,沈青松. 浅埋矩形顶管整体背土效应理论计算与分析. 市政技术. 2024(09): 129-134 .
    7. 马晓宾,苏栋,吴永照,吴炯,阳文胜,王雷,陈湘生. 浅埋矩形顶管背土效应全过程理论分析模型. 福州大学学报(自然科学版). 2024(05): 569-576 .
    8. 王虎,李栋,陈雪华,汪旭. 矩形顶管技术的应用与发展. 施工技术(中英文). 2023(01): 26-32 .
    9. 戢鸿鑫,刘跃军,张强,刘志寅,安峻彤,王耀正. 浅埋大断面矩形顶管下穿京杭大运河施工关键技术研究. 施工技术(中英文). 2023(07): 39-45 .
    10. 苏栋,吴炯,王雷,陈湘生,孙波,朱斌. 浅埋超大断面矩形顶管顶进对既有箱涵的影响. 广西大学学报(自然科学版). 2023(01): 1-9 .
    11. 黄建华,叶剑波. 大断面矩形顶管重力锚固基础力学特性分析. 人民长江. 2023(06): 140-146 .
    12. 张双茁,高桂庆,赖金星,张健伟,邱军领. MJS不同加固方式对降低顶管施工影响的效果分析. 建筑科学与工程学报. 2023(05): 183-191 .
    13. 甄亮,张显裕,李晓军. 浅埋矩形顶管整体背土效应判别方法应用与处理措施. 现代隧道技术. 2022(02): 167-171+181 .
    14. 兰彬,张鹏,张云龙,闫雪峰. 矩形顶管管周差异摩阻力对地层纵向水平位移的影响. 地质科技通报. 2022(03): 215-221 .
    15. 贾连辉,谌文涛,范磊,袁征. 特大断面矩形隧道掘进机关键系统设计与应用——结合嘉兴市长水路下穿南湖大道项目. 隧道建设(中英文). 2022(05): 917-928 .
    16. 马鹏,岛田英树,马保松,黄胜,周浩. 矩形顶管关键技术研究现状及发展趋势探讨. 隧道建设(中英文). 2022(10): 1677-1692 .
    17. 高浩,吴炯,阳文胜,苏栋,吴永照,陈湘生. 隔离墙对顶管顶进背土效应的抑制作用研究. 现代隧道技术. 2022(S1): 1120-1126 .
    18. 桂林,任睿祺,史培新,刘维. 浅埋矩形顶管施工引起的地层沉降变化规律. 城市轨道交通研究. 2022(12): 94-100 .
    19. 吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 .
    20. 赵李勇. 浅埋矩形顶管施工顶推力动态监测分析. 建筑机械化. 2021(03): 13-16 .
    21. 陈志. 软弱地层浅埋矩形顶管沉降控制技术研究. 铁道建筑技术. 2021(08): 144-148 .
    22. 许有俊,黄正东,张旭,张朝,康佳旺,周薇. 大断面土压平衡矩形顶管多刀盘实测扭矩参数研究. 现代隧道技术. 2021(05): 96-103 .
    23. 李启旭,龚建伍,霍震. 浅埋矩形顶管施工地表沉降特性试验研究. 土工基础. 2021(06): 801-804 .
    24. 薛青松. 矩形顶管上穿地铁隧道施工对地表变形影响研究. 山西建筑. 2020(15): 9-11 .
    25. 李育发,李永江. 包头地下综合管廊矩形顶管施工关键技术及地表变形特征. 内蒙古科技大学学报. 2020(03): 289-293+299 .
    26. 薛广记,贾连辉,范磊,谌文涛. 大断面矩形掘进机土压平衡控制技术探究. 建筑机械化. 2020(10): 41-45 .
    27. 程鹏,高毅,于少辉,李洋. 结构分割转换工法结构体系安全性分析. 隧道建设(中英文). 2019(03): 435-443 .
    28. 苏明浩,高毅,程鹏. 关于结构分割转换工法不同分割方式的探讨. 隧道建设(中英文). 2019(03): 444-450 .
    29. 贺善宁,豆小天,赵李勇,崔现慧,王晋波,宝青峰. 浅埋矩形顶管群密贴施工的顶推力分析研究. 隧道建设(中英文). 2019(03): 383-390 .
    30. 高毅,冯超元,程鹏. 结构分割转换工法在地下空间开发中的应用及设想. 隧道建设(中英文). 2019(03): 398-406 .
    31. 豆小天,王贺昆,曹伟明,王晋波,赵李勇,冉敬鹏. 浅埋矩形顶管整体背土效应的原因分析与处理措施. 隧道建设(中英文). 2019(03): 473-479 .
    32. 李洋,高毅,于少辉,程鹏,罗雨田. 结构分割转换工法在地下车库建设中的应用研究. 隧道建设(中英文). 2019(03): 488-495 .
    33. 高毅,于少辉,李洋,程鹏,罗雨田,冯超元. 大型地下空间的结构分割转换工法研究. 隧道建设(中英文). 2019(03): 480-487 .
    34. 李鹏,李洋,高毅,于少辉,李应飞. 基于“CC工法”的顶管隧道施工地表变形规律分析与研究. 隧道建设(中英文). 2019(11): 1838-1847 .
    35. 申洋,穆保岗. 矩形顶管施工对邻近基桩的附加荷载分析. 地下空间与工程学报. 2018(S2): 781-787+820 .
    36. 苏明浩,程鹏,高毅,于少辉,李洋. 基于CC工法建造的地下结构受力分析. 隧道建设(中英文). 2018(S2): 136-143 .
    37. 李永平,白静. 输电隧道浅埋矩形顶管在砂类土下的数值模拟分析. 内蒙古电力技术. 2018(06): 86-89 .

    Other cited types(10)

Catalog

    Article views (161) PDF downloads (90) Cited by(47)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return