JIANG Ming-jing, LÜ Lei, SHI An-ning, CAO Pei, WU Xiao-feng. Development of miniature dynamic triaxial apparatus for microct scanning and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 214-218. DOI: 10.11779/CJGE2020S1042
    Citation: JIANG Ming-jing, LÜ Lei, SHI An-ning, CAO Pei, WU Xiao-feng. Development of miniature dynamic triaxial apparatus for microct scanning and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 214-218. DOI: 10.11779/CJGE2020S1042

    Development of miniature dynamic triaxial apparatus for microct scanning and its experimental verification

    More Information
    • Received Date: May 31, 2020
    • Available Online: December 07, 2022
    • The microstructure of soil has a great influence on the macroscopic mechanical properties. Therefore, to study the relationship between the macroscopic mechanical properties and the microstructure evolution of soil under the cyclic loading, a miniature dynamic triaxial apparatus is developed, which is suitable for industrial micro CT (computerized tomography) scanning. The apparatus is mainly composed of the acquisition control system, loading device system, and air-liquid converter. It has the advantages of small volume, miniaturization of the specimen (diameter × height=10 mm×20 mm), convenient to operate, strong compatibility, and the specimen can be rotating-scanned without refitting the existing CT equipment. By using the miniature dynamic triaxial apparatus and conventional dynamic triaxial apparatus, a series of unconsolidated-undrained triaxial tests on Toyoura sand under cyclic loading and different confining pressures (50, 100, 200 and 300 kPa) are carried out, and the initial dynamic elastic modulus (E0), dynamic shear modulus (Gd) and damping ratio (λ) are comparatively analyzed. The results show that the experimental curves of the initial dynamic elastic modulus (E0), dynamic shear modulus (Gd) and damping ratio (λ) exhibit a similar evolution. The difference of experimental data is small, thus, the reliability of the miniature dynamic triaxial apparatus is verified.
    • [1]
      蒋明镜. 现代土力学研究的新视野—宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254.

      JIANG Ming-jing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese)
      [2]
      AMOROSI A, RAMPELLO S. An experimental investigationinto the mechanical behaviour of a structured stiff clay[J]. Géotechnique, 2007, 57(2): 153-166. doi: 10.1680/geot.2007.57.2.153
      [3]
      JIANG M J, YU H S, HARRIS D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32(5): 340-357. doi: 10.1016/j.compgeo.2005.05.001
      [4]
      COOP M R, SORENSEN K K, FREITAS T B, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157
      [5]
      JIANG M J, SUN Y G, LI L Q, et al. Contact behavior of idealized granules bonded in two different interparticledistances: an experimental investigation[J]. Mechanics of Materials, 2012, 55(14): 1-15.
      [6]
      王艳丽, 程展林. CT扫描技术在我国土工试验中的应用研究进展[J]. 地震工程学报, 2015, 37(增刊1): 35-39.

      WANG Yan-li, CHENG Zhan-lin. Progress in the application of CT scanning technology in Chinese soil tests[J]. China Earthquake Engineering Journal, 2015, 37(S1): 35-39. (in Chinese)
      [7]
      胡波, 龚壁卫, 童军, 等. 单向冻结冻融循环三轴仪的研制及其应用[J]. 长江科学院院报, 2015, 32(2): 128-132.

      HU Bo, GONG Bi-wei, TONG Jun, et al. Development and application of unilateral freezing triaxial apparatus for freeze-thaw cycle[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(2): 128-132. (in Chinese)
      [8]
      郑剑锋, 马巍, 赵淑萍, 等. 与CT机配套的便携式控温压力舱的研制与应用[J]. 冰川冻土, 2014, 36(4): 928-933.

      ZHENG Jian-feng, MA Wei, ZHAO Shu-ping, et al. The portable three-terminal controlling temperature apparatus matched to computerized tomography: development and application[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 928-933. (in Chinese)
      [9]
      程壮, 王剑锋. 用于颗粒土微观力学行为试验的微型三轴试验仪[J]. 岩土力学, 2018, 39(3): 1123-1129.

      CHENG Zhuang, WANG Jian-feng. A mini-triaxial apparatus for testing of micro-scale mechanical behavior of granular soils[J]. Rock and Soil Mechanics. 2018, 39(3): 1123-1129. (in Chinese)
      [10]
      蒋明镜, 李光帅, 曹培, 等. 用于土体宏微观力学特性测试的微型三轴仪研制[C]//第29届全国土工测试学术研讨会, 2020, 呼和浩特.

      JIANG Ming-jing, LI Guang-shuai, CAO Pei, et al. Developmentof the miniature triaxial apparatus for testing of macro and micromechanical behavior of soils[C]//The 29th National Conference on Geotechnical Testing, 2020, Huhhot. (in Chinese)
    • Related Articles

      [1]ZHOU Jiajin, MA Junjie, YU Jianlin, GONG Xiaonan, ZHANG Rihong. Field tests on bearing capacity of pre-bored grouted planted piles under compression and tension[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 640-647. DOI: 10.11779/CJGE20221414
      [2]WANG Yong-hong, ZHANG Ming-yi, LIU Jun-wei, BAI Xiao-yu, YANG Su-chun, SANG Song-kui, YAN Nan. Field tests on excess pore pressure and soil pressure of pile-soil interface for a single pile during pile-sinking in clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 950-958. DOI: 10.11779/CJGE201905019
      [3]TU Bing-xiong, CAI Yan-yan, HE Jin-fang, YU Jin, XU Guo-ping, CHENG Qiang. Analysis of anchorage performance on new tension-compression anchor Ⅲ field test[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 846-854. DOI: 10.11779/CJGE201905007
      [4]FAN Ke-wei, LIU Si-hong, XU Si-yuan, WANG Jian-lei. Field tests on retaining wall constructed with soilbags filled with clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2341-2348. DOI: 10.11779/CJGE201812024
      [5]ZHAO Ming-hua, YANG Chao-wei, CHEN Yao-hao, YIN Ping-bao. Field tests on double-pile foundation of bridges in high-steep cross slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 329-335. DOI: 10.11779/CJGE201802014
      [6]CHEN Yu-min, HE Sen-kai, FANG Zhi, JIANG Qiang. Field tests on liquefaction resistance of desaturation measure of electrolysis[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 832-838. DOI: 10.11779/CJGE201705007
      [7]LIU Long, LI Guo-wei, HE Guan-jun, YU Liang, LIU Xue. Development of load anchorage device for pre-stress GFRP soil nail reinforcement element in slopes and field tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 718-726. DOI: 10.11779/CJGE201504018
      [8]WU Jun-hua, YUAN Jun-ping. Field tests on expansive soil during wetting-drying cycles using large shear apparatus[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 103-107.
      [9]ZHU Bin, YANG Yong-yao, YU Zhen-gang, GUO Jie-feng, CHEN Yun-min. Field tests on lateral monotonic and cyclic loadings of offshore elevated piles[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1028-1037.
      [10]GARTUNG Erwin, HENKEN MELLIES Ulrich, RAMKE Hans Gunter, HU Yifeng. Field tests on landfill covers for evaluation of performance of mineral cover systems[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 403-409.
    • Cited by

      Periodical cited type(8)

      1. 王泽志,王杰,马小刚,李帆,范新亚,陈燕. 用磁性微磨料射流技术光整加工交叉深孔内壁. 金刚石与磨料磨具工程. 2025(02): 245-255 .
      2. 王高辉,孔维伟,卢文波,潘鑫豪,舒奕展. 高拱坝坝后侵彻爆炸毁伤效应分析. 武汉大学学报(工学版). 2024(07): 853-862 .
      3. 王义江,郁东旭,孙立鹏,朱启银,王建州. 激光照射岩石热裂特性与裂隙分布研究. 岩土工程学报. 2024(09): 1809-1819 . 本站查看
      4. 韩明兴,余锴,段宏兵,熊利荣,徐琨,李淼,刘琦. 基于SPH-FEM的油菜茎秆磨粒气体射流切割仿真与试验. 农业工程学报. 2024(17): 82-92 .
      5. 李新旺,王汉青,程立朝,张学栋,温学君,申鹏飞. 高压水射流冲击下煤体初始失效形式分析. 中国科技论文. 2023(01): 64-70+90 .
      6. 胡阳,曹安业,秦续峰,薛成春,郭文豪,刘耀琪,彭雨杰. 深部冲击地压煤层水射流割缝卸压参数优化研究. 岩土工程学报. 2023(07): 1509-1516 . 本站查看
      7. 林琳,赵志磊,蒋东岑,张云朋,尤晖. 尖边喷嘴磨料水射流特性分析及对去除函数轮廓的影响. 液压与气动. 2023(09): 116-129 .
      8. 王璐,徐绯,杨扬. 完全拉格朗日SPH在冲击问题中的改进和应用. 力学学报. 2022(12): 3297-3309 .

      Other cited types(9)

    Catalog

      Article views (331) PDF downloads (143) Cited by(17)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return