Citation: | GU Xiao-qiang, ZUO Kang-le, GAO Guang-yun. Investigation on relationship between P-wave velocity and B-value by bender element tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 151-155. DOI: 10.11779/CJGE2020S1030 |
[1] |
SHERIF M A, ISHIBASHI I, TSUCHIYA C. Saturation effect on initial soil liquefaction[J]. Journal of the Geotechnical Engineering Division, 1977, 103(8): 914-917. doi: 10.1061/AJGEB6.0000477
|
[2] |
YOSHIMI Y, TANAKA K, TOKIMATSU K. Liquefaction resistance of a partially saturated sand[J]. Soils and Foundation, 1989, 29(3): 157-162. doi: 10.3208/sandf1972.29.3_157
|
[3] |
TSUKAMOTO Y, ISHIHARA K, NAKAZAWA H, et al. Resistance of partly saturated sand to liquefaction with reference to longitudinal and shear wave velocities[J]. Soils and Foundations, 2002, 42(6): 93-104. doi: 10.3208/sandf.42.6_93
|
[4] |
SKEMPTON A W. The pore-pressure coefficients A and B[J]. Géotechnique, 1954, 4(4): 143-147. doi: 10.1680/geot.1954.4.4.143
|
[5] |
YANG J. Pore pressure coefficient for soil and rock and its relation to compressional wave velocity[J]. Géotechnique, 2005, 55(3): 251-256. doi: 10.1680/geot.2005.55.3.251
|
[6] |
TAMURA S, TOKIMATSU K, ABE A, SATO M. Effect of air bubble on B-value and P-wave velocity of a partially saturated sand[J]. Soils and Foundations, 2002, 42(1): 121-129. doi: 10.3208/sandf.42.121
|
[7] |
NAESGAARD E, BRYNE P M, WIJEWICKREME D. Is P-wave velocity an indicator of saturation in sand with viscous pore fluid?[J]. International Journal of Geomechanics, 2007, 7(6): 437-443. doi: 10.1061/(ASCE)1532-3641(2007)7:6(437)
|
[8] |
HAKANATA M, MASUDA T. Experimental study on the relationship between degree of saturation and P-wave velocity in sandy soils[C]//Geotechnical Engineering for Disaster Mitigation and Rehabilitation, Part 4. Beijing: Science Press, 2008: 346-351.
|
[9] |
GU X Q, YANG J, HUANG M S. Laboratory investigation on relationship between degree of saturation, B-value and P-wave velocity[J]. Journal of Center South University, 2013, 20(7): 2001-2007. doi: 10.1007/s11771-013-1701-x
|
[10] |
POLITO C P, MARTIN J R. Effect of non-plastic fines on the liquefaction resistance of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(5): 408-415. doi: 10.1061/(ASCE)1090-0241(2001)127:5(408)
|
[11] |
XENAKI V C, ATHANASOPOULOS G A. Liquefaction resistance of sand-silt mixture: an experimental investigation of the effect of fines[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(3): 183-194.
|
[12] |
CHANG W J, HONG M L. Effect of clay content on liquefaction characteristics of gap-graded clayey sands[J]. Soils and Foundations, 2008, 48(1): 101-114. doi: 10.3208/sandf.48.101
|
[13] |
LINGS M L, GREENING P D. A novel bender/extender element for soil testing[J]. Géotechnique, 2001, 51(8): 713-717. doi: 10.1680/geot.2001.51.8.713
|
[14] |
BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: I Low frequency range: II Higher frequency range[J]. Journal of the Acoustic Society of America, 1956, 28(2): 168-191. doi: 10.1121/1.1908239
|
[15] |
PLONA T J. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies[J]. Applied Physics Letters, 1980, 36(4): 259-261. doi: 10.1063/1.91445
|
[16] |
GU X Q, YANG J, HUANG M S. Laboratory measurements of small strain properties of dry sands by bender element[J]. Soils and Foundations, 2013, 53(5): 735-745. doi: 10.1016/j.sandf.2013.08.011
|
[17] |
GU X Q, YANG J, HUANG M S, et al. Bender element tests in dry and saturated sand: signal interpretation and result comparison[J]. Soils and Foundations, 2015, 55(5): 952-963.
|
[1] | WANG Caijin, YANG Yang, WU Meng, CAI Guojun, HE Huan, LIU Songyu, Chang Jianxin, WANG Meng. Settlements of composite foundation for expressway expansion based on CPTU tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 176-179. DOI: 10.11779/CJGE2023S10011 |
[2] | AN Peng, ZHANG Jie, NI Wankui, MA Xinchao, HU Xingqun, ZHANG Changbo. Settlement and deformation characteristics of high fill of Luojiahe expansive soil in Ankang Airport[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 833-839. DOI: 10.11779/CJGE20220071 |
[3] | YANG Guang-hua, LI Zhuo-xun, WANG Dong-ying, LI Zhi-yun, JIANG Yan. Advanced tangent modulus method and its application to calculation of foundation settlement[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 787-798. DOI: 10.11779/CJGE202205001 |
[4] | YANG Guang-hua. Innovation and development of modern theories for foundation design[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 1-18. DOI: 10.11779/CJGE202101001 |
[5] | KONG Yang, RUAN Huai-ning, HUANG Xue-feng. Method for calculating foundation settlement of compacted backfill in hilly and gully regions of loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 218-223. DOI: 10.11779/CJGE2018S1035 |
[6] | ZHANG Zhi-guo, YANG Xuan, ZHAO Qi-hua, FEI Si-yi, JIA Yan-chen. Simplified analysis of frame buildings with shallow foundation induced by excavation of adjacent foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 224-227. DOI: 10.11779/CJGE2017S2054 |
[7] | YANG Guang-hua, LUO Yi-dao, ZHANG Yu-cheng, WANG En-qi. Determination of parameters for tangent modulus method using simple in-situ test and its application in nonlinear settlement analysis on sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 401-408. |
[8] | Probabilistic foundation settlement based on random field theory[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7). |
[9] | DING Zhouxiang, GONG Xiaonan, LI Youyun, LIU Baojian. Study on some problems of settlement calculation with secant modulus method and its modification[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 313-316. |
[10] | Liu Ning, Guo Zhichuan, Luo Boming. Probabilistic analysis and reliability assessment for foundation settlement[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 143-150. |