• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, ZHU Ming-xing, GAO Lu-chao. Strength and microstructure of calcareous sand-cemented soil under seawater erosion environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 65-69. DOI: 10.11779/CJGE2020S1013
Citation: WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, ZHU Ming-xing, GAO Lu-chao. Strength and microstructure of calcareous sand-cemented soil under seawater erosion environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 65-69. DOI: 10.11779/CJGE2020S1013

Strength and microstructure of calcareous sand-cemented soil under seawater erosion environment

More Information
  • Received Date: June 03, 2020
  • Available Online: December 07, 2022
  • Aiming at the durability and long-term stability problems of calcareous sand-cemented soil composite foundation in the marine environment, the seawater is used as the corrosive medium to perform an indoor soaking test on the calcareous sand cemented soil, and the micro cone penetration, scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction tests are conducted to analyze the strength and microstructure characteristics of calcareous sand cemented soil with different curing time and cement ratios under seawater environment. The results show that the erosion depth of calcareous sand-cemented soil gradually increases with the increase of curing time and gradually decreases with the increase of cement ratio, and the increase of cement ratio can effectively inhibit the erosion depth of cemented soil caused by seawater corrosive ions. Compared with those of the non-eroded layer, the porosities of microstructure are lager and the Ca contents are less in the eroded layer, and the Ca content and the strength of cemented soil show a similar rule. Under seawater environmental conditions, the strength change of cemented soil is the common result of the effects of growth and erosion. In this process, the cemented soil is prone to the phenomenon of Ca dissolution, which finally leads to the strength reduction of cemented soil.
  • [1]
    COOP M R. The mechanics of uncemented carbonate sands[J]. Géotechnique, 1990, 40(4): 607-626. doi: 10.1680/geot.1990.40.4.607
    [2]
    GHAZALI F M, SOTIROPOULOS E, MANSOUR O A. Large-diameter bored and grouted piles in marine sediments of the Red Sea[J]. Canadian Geotechnical Journal, 1988, 25(4): 826-831. doi: 10.1139/t88-090
    [3]
    房靖超, 陈涛, 何岩东, 等. 珊瑚砂层注浆的固化技术研究[J]. 海南大学学报(自然科学版), 2016, 34(3): 264-269. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDK201603011.htm

    FANG Jing-chao, CHEN Tao, HE Yan-dong, et al. Solidification technology of coral sand[J]. Natural Science Journal of Hainan University, 2016, 34(3): 264-269. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDK201603011.htm
    [4]
    HARA H, HAYASHI S, SUETSUGU D, et al. Study on the property changes of lime-treated soil under sea water[J]. Doboku Gakkai Ronbunshuu C/JSCE Journal of Geotechnical and Geoenvironmental Engineering, 2010, 66(1): 21-30.
    [5]
    刘泉声, 屈家旺, 柳志平, 等. 侵蚀影响下水泥土的力学性质试验研究[J]. 岩土力学, 2014, 35(12): 3377-3384. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412005.htm

    LIU Quan-sheng, QU Jia-wang, LIU Zhi-ping, et al. Experimental study of mechanical properties of cemented soil under corrosion influence[J]. Rock and Soil Mechanics, 2014, 35(12): 3377-3384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412005.htm
    [6]
    杨俊杰, 孙涛, 张玥宸, 等. 腐蚀性场地形成的水泥土的劣化研究[J]. 岩土工程学报, 2012, 34(1): 130-138. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201013.htm

    YANG Jun-jie, SUN Tao, ZHANG Yue-chen, et al. Deterioration of soil cement stabilized in corrosive site[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 130-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201013.htm
    [7]
    闫楠. 滨海相软土场地形成的水泥土强度衰减过程研究[D]. 青岛: 中国海洋大学, 2015.

    YAN Nan. Research on Strength Deterioration Process of Cement Soil in Site of Marine Soft Soil[D]. Qingdao: Ocean University of China, 2015. (in Chinese)
  • Related Articles

    [1]TAO Yuan-qin, SUN Hong-lei, CAI Yuan-qiang. Bayesian back analysis considering constraints[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1878-1886. DOI: 10.11779/CJGE202110014
    [2]LIU Zheng-yu, PANG Yong-hao, WANG Chuan-wu, YANG-Wei-min, LIU Shen-hua, WANG Ning. Cross-hole resistivity inversion method constrained by prior information of incomplete boundary[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1124-1132. DOI: 10.11779/CJGE201906017
    [3]WANG Chuan-wu, LI Shu-cai, NIE Li-chao, LIU Bin, GUO Qian, REN Yu-xiao, LIU Hai-dong. 3D E-SCAN resistivity inversion and optimized method in tunnel advanced prediction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 218-227. DOI: 10.11779/CJGE201702004
    [4]WANG Chuan-wu, LI Shu-cai, LIU Bin, NIE Li-chao, ZHANG Feng-kai, SONG Jie, GUO Qian, REN Yu-xiao. 3D constrained electrical resistivity inversion method based on reference model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1685-1694. DOI: 10.11779/CJGE201609016
    [5]BI Yu-zhang, HE Si-ming, LI Xin-po, WU Yong, WANG Dong-po, FU Yue-sheng. Kinetic mechanism of mixed particles under constraint conditions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 529-536. DOI: 10.11779/CJGE201603017
    [6]LIU Bin, WANG Chuan-wu, YANG Wei-min, LI Shu-cai, NIE Li-chao, SONG Jie. 3D resistivity inversion using improved parallel genetic algorithm[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1252-1261. DOI: 10.11779/CJGE201407009
    [7]LIU Bin, LI Shu-cai, NIE Li-chao, WANG Jing, SONG Jie, LIU Zheng-yu. Advanced detection of water-bearing geological structures in tunnels using 3D DC resistivity inversion tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1866-1876.
    [8]LIU Bin, LI Shu-cai, NIE Li-chao, LI Li-ping, LIU Zheng-yu, SONG Jie, SUI Bin, ZHOU Zong-qing. Inversion imaging of 3D resistivity detection using adaptive-weighted smooth constraint and PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1646-1653.
    [9]ZHANG Dong-ming, CHEN Jiang, HE Hong-fu, ZHANG Xing-hua. Unequal interval grey model based on dynamic correction of time-distance weight[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1137-1141.
    [10]LUO Rui, HUANG Xiaoming. Calculation on the stress intensity factor for the bottom crack of asphalt layer in asphalt pavement considering partial constraint by weight function[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 610-613.
  • Cited by

    Periodical cited type(4)

    1. 刘子健,王佳,王华毅,赵聪,吴凡,臧万军. 厦门典型地层组合结构水头压力损失规律研究. 现代隧道技术. 2024(03): 212-219 .
    2. 梁泽田,郑山锁,刘晓航,胡文乐,杜宜阳,宋枳含. 弱渗透性土中地下结构承受水压规律试验研究. 土木工程学报. 2024(08): 83-96 .
    3. 陈博. 空气浮力对质量比较仪的影响. 衡器. 2024(10): 11-13 .
    4. 胥家圣. 多路径下黏土孔压传递机理及浮力试验研究. 铁道建筑技术. 2023(01): 8-11+31 .

    Other cited types(6)

Catalog

    Article views (255) PDF downloads (96) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return