• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Zai-qiang, GUO Jing, LIANG Zhi-chao, WANG Kai, FENG Zhe, CHEN Zhen-peng. Effects of clay content on physical and mechanical properties of fine tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 16-21. DOI: 10.11779/CJGE2020S1004
Citation: HU Zai-qiang, GUO Jing, LIANG Zhi-chao, WANG Kai, FENG Zhe, CHEN Zhen-peng. Effects of clay content on physical and mechanical properties of fine tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 16-21. DOI: 10.11779/CJGE2020S1004

Effects of clay content on physical and mechanical properties of fine tailings

More Information
  • Received Date: May 31, 2020
  • Available Online: December 07, 2022
  • With the progress of beneficiation technology, the size of tailings is getting smaller, and the proportion of clay is gradually increasing. Therefore, it is particularly urgent and necessary to study the influences of clay content on the physical and mechanical characteristics of fine tailings. Through a series of physical and mechanical experiments, the effects of clay content on the physical characteristics, permeability characteristics, consolidation characteristics, shear characteristics and dynamic characteristics of fine tailings are studied. The test results show that as the clay content increases, Cu increases significantly, while Cc does not change significantly, and liquid limit, plastic limit and plastic index all increase. As the content of clay particles increases, the permeability coefficient decreases, and the compressibility first increases and then decreases. Cohesion keeps increasing with the increase of clay content, while the internal friction angle keeps decreasing. The effects of clay content on liquefaction of fine tailings are to promote first and then inhibit, and liquefaction damage is most likely to occur at 10%. As the clay content increases, the dynamic shear modulus decreases first and then increases, and the damping ratio increases first and then decreases. It is shown that the clay content has a significant effect on the physical and mechanical properties of fine tailings, and it should be paid full attention to in engineering.
  • [1]
    《中国有色金属尾矿库概论》编辑委员会. 中国有色金属尾矿库概论[R]. 北京: 中国有色金属工业总公司, 1992.

    “Introduction to China Nonferrous Metal Tailings Library” Editorial Committee. Introduction to China Nonferrous Metal Tailings Reservoir[R]. Beijing: China Nonferrous Metals Industry Corporation, 1992. (in Chinese)
    [2]
    尾矿堆积坝岩土工程技术规范:GB 50547—2010[S]. 2010.

    Technical Specifications for Geotechnical Engineering of Tailings Deposit Dam: GB 50547—2010[S]. 2010. (in Chinese)
    [3]
    徐志英, 沈珠江. 高尾矿坝的静、动应力非线性分析与地震稳定性[J]. 华东水利学院学报, 1980(4): 59-75. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX198004003.htm

    XU Zhi-ying, SHEN Zhu-jiang. Nonlinear analysis of static and dynamic stresses and seismic stability of high tailings dam[J]. Journal of East China Water Conservancy College, 1980(4): 59-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX198004003.htm
    [4]
    王武林, 杨春和, 阎金安. 某铅锌矿尾矿坝工程勘察与稳定性分析[J]. 岩石力学与工程学报, 1992, 11(4): 332-344. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199204001.htm

    WANG Wu-lin, YANG Chun-he, YAN Jin-an. Engineering exploration and stability analysis of the tailings dam of a Lead-zinc Mine[J]. Chinese Journal of Rock Mechanics and Engineering, 1992, 11(4): 332-344. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199204001.htm
    [5]
    陈存礼, 何军芳, 胡再强, 等. 尾矿砂的动力变形及动强度特性研究[J]. 水利学报, 2007(3): 365-370. doi: 10.3321/j.issn:0559-9350.2007.03.019

    CHEN Cun-li, HE Jun-fang, HU Zai-qiang, et al. Experimental study on dynamic deformation and dynamic strength of tailing sands[J]. Journal of Hydraulic Engineering, 2007(3): 365-370. (in Chinese) doi: 10.3321/j.issn:0559-9350.2007.03.019
    [6]
    李宏儒, 胡再强, 陈存礼, 等. 金堆城尾矿坝加高方案数值模拟及稳定性分析[J]. 岩土力学, 2008, 39(4): 1138-1142. doi: 10.3969/j.issn.1000-7598.2008.04.053

    LI Hong-ru, HU Zai-qiang, CHEN Cun-li, et al. Numerical simulation and slope stability analysis in Jingduicheng tailings dam to be designed to increase the dam height[J]. Rock and Soil Mechanics, 2008, 39(4): 1138-1142. (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.04.053
    [7]
    陈守义. 浅议上游法细粒尾矿堆坝问题[J]. 岩土力学, 1995, 16(3): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX503.010.htm

    CHEN Shou-yi. Some superficial views on the probelm of building fine grain tailings fill dams by means of up-stream method[J]. Rock and Soil Mechanics, 1995, 16(3): 70-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX503.010.htm
    [8]
    尹光志, 张东明, 魏作安, 等. 土工合成材料与细粒尾矿界面作用特性的试验研究[J]. 岩石力学与工程学报, 2004, 23(3): 426-429. doi: 10.3321/j.issn:1000-6915.2004.03.012

    YIN Guang-zhi, ZHANG Dong-ming, WEI Zuo-an, et al. Testing study on interaction characteristics between fine grained tailings and geosynthetics[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(3): 426-429. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.03.012
    [9]
    巫尚蔚, 杨春和, 张超, 等. 粉粒含量对尾矿力学特性的影响[J]. 岩石力学与工程学报, 2017, 36(8): 2007-2017. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708021.htm

    WU Shang-wei, YANG Chun-he, ZHANG Chao, et al. The effects of silt content on the mechanical properties of tailings[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 2007-2017. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708021.htm
    [10]
    CONSTANTINESCU J, CONSTANTINESCU D. Particularity of plasticity characteristics of fine glacial materials (North Chicago area)[J]. Geoecomarina, 2010.
    [11]
    DAFALLA M A. Effects of clay and moisture content on direct shear tests for clay-sand mixtures[J]. Advances in Materials Science & Engineering, 2013(4).
    [12]
    曾长女, 冯伟娜. 黏粒含量对粉土液化后特性影响的试验研究[J]. 地震工程学报, 2014, 36(3): 727-733. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201403046.htm

    ZENG Chang-nü, FENG Wei-na. Influence of clay content on postliquefaction characteristics of silt[J]. China Earthquake Engineering Journal, 2014, 36(3): 727-733. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201403046.htm
    [13]
    王力, 李喜安, 赵宁, 等. 黏粒含量对黄土物理力学性质的影响[J]. 中国地质灾害与防治学报, 2018, 29(3): 133-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201803019.htm

    WANG Li, LI Xi-an, ZHAO Ning, et al. Effect of Clay Content on Physical and Mechanical Properties of Loess Soils[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(3): 133-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201803019.htm
    [14]
    李涛, 唐小微. 黏粒和粉粒的共存对砂土静动力液化影响的试验研究[J]. 岩土工程学报, 2019, 41(增刊2): 169-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2044.htm

    LI Tao, TANG Xiao-wei. Experimental study on effect of coexistence of clay and silt on static and dynamic liquefaction of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 169-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2044.htm
    [15]
    蔡清, 程江涛, 于沉香. 细粒尾矿的定义及分类方法探讨[J]. 土工基础, 2014, 28(1): 91-93.岩土力学,2004, 25(增刊): 71-74.

    CAI Qing, CHENG Jiang-tao, YU Chen-xiang. Definition and classification of fine grain materials from mine tailings[J]. Soil Engineering and, Foundation 2014, 28(1): 91-93. Rock and Soil Mechanics, 2004, 25(S0): 71-74. (in Chinese)
    [16]
    李建红, 张其光, 孙逊, 等. 胶结和孔隙比对结构性土力学特性的影响[J]. 清华大学学报(自然科学版), 2008, 48(9): 1431-1435. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200809013.htm

    LI Jian-hong, ZHANG Qi-guang, SUN Xun, et al. Effect of bonding and void ratio on the mechanical behavior of structured soil[J]. Journal of Tsinghua University(Sci &Tech), 2008, 48(9): 51-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200809013.htm
    [17]
    龚晓南, 熊传祥, 项可祥, 等. 黏土结构性对其力学性质的影响及形成原因分析[J]. 水利学报, 2000, 31(10): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200010006.htm

    GONG Xiao-nan, XIONG Chuan-xiang, XIANG Ke-xiang, et al. The formation of ciay structure and its infiuence on mechanical characteristics of clay[J]. Journal of HydrauIic Engineering, 2000, 31(10): 43-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200010006.htm
    [18]
    王权民, 李刚, 陈正汉, 等. 厦门砂土的动力特性研究[J]. 岩土力学, 2005, 26(10): 107-111. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200510019.htm

    WANG Quan-min, LI Gang, CHEN Zheng-han, et al. Study on dynamic characteristics of Xia men Sand[J]. Rock and Soil Mechanics, 2005, 26(10): 107-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200510019.htm
    [19]
    谢定义. 土动力学[M]. 西安: 西安交通大学出版社, 1987.

    XIE Ding-yi. Soil Dynamics[M]. Xi'an: Xi'an Jiao-tong University Press, 1987. (in Chinese)
  • Related Articles

    [1]ZHAO Yong, YANG Tian-hong, WANG Shu-hong, JIA Peng. Damage analysis method for mining rock mass based on microseismic-derived fractures and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 305-314. DOI: 10.11779/CJGE202202012
    [2]TANG Chao, LI Shu-lin, ZHOU Meng-jing, LIU Yin-chi. Stress inversion based on microseismic monitoring and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1730-1738. DOI: 10.11779/CJGE202109019
    [3]ZHOU Chun-hua, LI Yun-an, YIN Jian-min, WANG Yang, ZHOU Chao, GUO Xi-feng. Multivariate early warning method for rockbursts based on comprehensive microseismic and electromagnetic radiation monitoring[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 457-466. DOI: 10.11779/CJGE202003007
    [4]QIAN Bo, YANG Ying, XU Nu-wen, DAI Feng, ZHOU Jia-wen, FAN Yi-lin, XU Jian. Feedback analysis of rock damage deformation of slope at left bank of Baihetan Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1464-1471. DOI: 10.11779/CJGE201908010
    [5]ZHAO Guo-yan, DENG Qing-lin, MA Ju. Recognition of mine microseismic signals based on FSWT time-frequency analysis[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 306-312. DOI: 10.11779/CJGE201502014
    [6]YU Qun, TANG Chun-An, LI Lian-chong, LI Hong, CHENG Guan-wen. Nucleation process of rockbursts based on microseismic monitoring of deep-buried tunnels for Jinping Ⅱ Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2315-2322. DOI: 10.11779/CJGE201412021
    [7]HU Jing-yun, LI Shu-lin. Optimization of picking mine microseismic P-wave arrival time and its application in reducing error of source locating[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1940-1946. DOI: 10.11779/CJGE201410023
    [8]MIAO Xiao-hu, JIANG Fu-xing, WANG Cun-wen, DENG Jian-ming. Mechanism of microseism-inducdrock burst revealed by microseismic monitoring[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 971.
    [9]LU Caiping, DOU Linming, WU Xingrong, WANG Huiming, QIN Yuhong. Frequency spectrum analysis on microseismic monitoring and signal differentiation of rock material[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 772-775.
    [10]JIANG Fuxing. Application of microseismic monitoring technology of strata fracturing in underground coal mine[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 147-149.
  • Cited by

    Periodical cited type(3)

    1. 支斌,李树忱,朱颖,田垚,万泽恩. 土压平衡盾构螺旋输送机渣土运移及参数影响. 应用力学学报. 2023(01): 107-115 .
    2. 莫品强,任志文,林玉祥,褚锋,顾瑞海. 基于孔压静探的滨海相软土抗剪强度解译方法研究. 地下空间与工程学报. 2023(S1): 112-123 .
    3. 王钰轲,冯爽,钟燕辉,张蓓. 基于集成学习模型的正常固结土抗剪强度指标预测方法. 岩土工程学报. 2023(S2): 183-188 . 本站查看

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return