• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Luan, SUN Rui, LIU Hui-da, YUAN Xiao-ming, WANG Yun-long. New method to compensate for membrane compliance in dynamic triaxial liquefaction tests on gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2281-2290. DOI: 10.11779/CJGE202012015
Citation: WANG Luan, SUN Rui, LIU Hui-da, YUAN Xiao-ming, WANG Yun-long. New method to compensate for membrane compliance in dynamic triaxial liquefaction tests on gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2281-2290. DOI: 10.11779/CJGE202012015

New method to compensate for membrane compliance in dynamic triaxial liquefaction tests on gravelly soils

More Information
  • Received Date: February 08, 2020
  • Available Online: December 05, 2022
  • The membrane compliance has a significant effect on the results of the triaxial liquefaction tests. The compensation method is one of the primary means to eliminate the impact of the membrane. The theoretical defects of the existing compensation methods are analyzed and verified in the comparison tests, and the new principle and method for the compensation of membrane compliance are proposed. Based on the large-scale dynamic triaxial liquefaction tests on the gravelly soils with various gravel contents and the measurement of membrane penetration volume, the feasibility and reliability of the new compensation method are verified by taking the modified pore pressure model, which can consider the membrane compliance as a reference. The research shows that the existing compensation principle will lead to inadequate compensation, which only uses the rebound water volume caused by the dynamic force as the total water supplement volume, and the new compensation principle is more scientific and reasonable, considering the effect of membrane distributary. In the dynamic triaxial liquefaction tests with different gravel contents and stresses, the results of the new method are consistent with the theoretical ones, and the variation law is uniform. Compared with the existing compensation method, the new method does not need repeated water replenishment and multiple approximations at a single compensation stage, and its operability is enhanced, and the compensation effect is superior. It is suitable for the dynamic triaxial liquefaction tests on gravelly soils and provides a new technical support for the dynamic characteristics tests on coarse-grained soils.
  • [1]
    袁晓铭, 秦志光, 刘荟达, 等. 砾性土液化的触发条件[J]. 岩土工程学报, 2018, 40(5): 777-785.

    YUAN Xiao-ming, QIN Zhi-guang, LIU Hui-da, et al. Necessary conditions of trigger liquefaction for gravelly soils layers[J]. Chinese Journal of Geotechanical Engineering, 2018, 40(5): 777-785. (in Chinese)
    [2]
    陈龙伟, 袁晓铭, 孙锐. 2011年新西兰Mw6.3地震液化及岩土震害评述[J]. 世界地震工程, 2013, 29(3): 1-9. doi: 10.3969/j.issn.1007-6069.2013.03.001

    CHEN Long-wei, YUAN Xiao-ming, SUN Rui. Review of liquefaction phenomena and geotechnical damage in the 2011 New Zealand Mw6.3 earthquake[J]. World Earthquake Engineering, 2013, 29(3): 1-9. (in Chinese) doi: 10.3969/j.issn.1007-6069.2013.03.001
    [3]
    CUBRINOVSKI M, BRAY J, DE La Torre C, et al. Liquefaction effects and associated damages observed at the Wellington Centreport from the 2016 Kaikoura earthquake[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2017, 50(2): 152-173. doi: 10.5459/bnzsee.50.2.152-173
    [4]
    EVANS D M, SEED H B. Undrained Cyclic Triaxial Testing of Gravels-the Effect of Membrane Compliance[R]. Report No.UCB/EERC-87/08. 1987.
    [5]
    NOOR M J M, NYUIN J D, DERAHMAN A. A graphical method for membrane penetration in triaxial tests on granular soils[J]. J Inst Eng, Malaysia, 2012, 73(1): 23-30.
    [6]
    王洪瑾. 橡皮膜顺变性对三轴试验中体变和孔隙水压力影响的试验研究[C]//中国土木工程学会第四届土力学及基础工程学术会议论文选集, 1983, 北京.

    WANG Hong-jin. Experimental study on the influence of membrane compliance on bulk deformation and pore water pressure in triaxial test[C]//Selected papers of the 4th soil mechanics and foundation engineering academic conference of China Civil Engineering Society, 1983, Beijing. (in Chinese)
    [7]
    SIVATHAYALAN S, VAID Y P. Truly undrained response of granular soils with no membrane-penetratio[J]. Canadian Geotechnical Journal, 1998, 35(5): 730-739. doi: 10.1139/t98-048
    [8]
    周景星, 周克骥, 王洪瑾. 动三轴试验中橡皮膜顺变性的影响及其校正方法[J]. 水利学报, 1986(5): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB198605001.htm

    ZHOU Jing-xing, ZHOU Ke-ji, WANG Hong-jin. The membrane effect and its alignment methods in dynamic triaxial test[J]. Journal of Hydraulic Engineering, 1986(5): 11-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB198605001.htm
    [9]
    王昆耀, 常亚屏, 陈宁. 粗粒土试样橡皮膜嵌入影响的初步研究[J]. 水电与抽水蓄能, 2000, 24(4): 45-46. doi: 10.3969/j.issn.1671-3893.2000.04.015

    WANG Kun-yao, CHANG Ya-ping, CHEN Ning. A preliminary study on membrane penetration effects in coarse-grained soil specimens[J]. Dam Observation and Geotechnical Tests, 2000, 24(4): 45-46. (in Chinese) doi: 10.3969/j.issn.1671-3893.2000.04.015
    [10]
    BANEJEE N G, SEED H B, CHAN C K. Cyclic Behavior of Dense Coarse Grained Materials in Relation to the Seismic Stability of Dams[R]. California: Earthquake Engineering Research Center, University of California, Berkeley, 1979: 79-13.
    [11]
    TOKIMATSU K, NAKAMURA K. A liquefaction test without membrane penetration effects[J]. Journal of the Japanese Society of Soil Mechanics and Foundation Engineering, 1986, 26(4): 127-138.
    [12]
    陈春霖, 张惠明. 饱和砂土三轴试验中的若干问题[J]. 岩土工程学报, 2000, 22(6): 659-663. doi: 10.3321/j.issn:1000-4548.2000.06.005

    CHEN Chun-lin, ZHANG Hui-ming. Some problems in triaxial test on saturated sands[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 659-663. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.06.005
    [13]
    YAMASHITA S, TOKI S, SUZUKI T. Effects of membrane penetration on modulus and poisson\"s ratio for undrained cyclic triaxial conditions[J]. Soils and Foundations, 1996, 36(4): 127-133. doi: 10.3208/sandf.36.4_127
    [14]
    HAERI, S M, SHAKERI, M R, SHAHCHERAGHI S A. Dynamic strength of gravelly sand with emphasis on the effect of membrane compliance[C]//14th World Conference on Earthquake Engineering, Beijing, 2008.
    [15]
    MIURA S, KAWAMURA S. A procedure minimizing membrane penetration effects in undrained triaxial test[J]. Soils and Foundations, 1996, 36(4): 119-126. doi: 10.3208/sandf.36.4_119
    [16]
    SEED R B, ANWAR H. Development of a Laboratory Technique for Correcting Results of Undrained Triaxial Shear Tests on Soils Containing Coarse Particles for Effects of Membrane Compliance[R]. California: Reprint of Stanford University Research, Leland Stanford Junior University, 1987.
    [17]
    RAMANA K V, RAJU V S. Constant-volume triaxial tests to study the effects of membrane penetration[J]. Geotechnical Testing Journal, 1981, 4(3): 117-122. doi: 10.1520/GTJ10777J
    [18]
    KRAMER S L, SIVANESWARAN N. A Nondestructive Specimen-Specific Method for Measurement of Membrane Penetration in the Triaxial Test[J]. Geotechnical Testing Journal, 1989, 12(1): 50-59. doi: 10.1520/GTJ10674J
    [19]
    谢定义. 土动力学[M]. 北京: 高等教育出版社, 2011.

    XIE Ding-yi. Soil Dynamics[M]. Beijing: Higher Education Press, 2011. (in Chinese)
    [20]
    MARTIN G R, SEED H B, FINN W D. Effects of system compliance on liquefaction tests[J]. Journal of the Geotechnical Engineering Division, 1978, 104(4): 463-479.
    [21]
    陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 北京: 中国水利水电出版社, 2009.

    CHEN Yu-min, XU Ding-ping. FLAC/FLAC3D Fundamentals and Engineering Applications[M]. Beijing: China Water & Power Press, 2009. (in Chinese)
    [22]
    HAERI S M, SHAKERI M R. Effects of membrane compliance on pore water pressure generation in gravelly sands under cyclic loading[J]. Geotechnical Testing Journal, 2010, 33(5): 658-661.
    [23]
    刘荟达, 袁晓铭, 王鸾, 等. 宽级配砾性土橡皮膜嵌入量计算新方法[J]. 岩石力学与工程学报, 2020. doi: 10.13722/j.cnki.jrme.2019.1216.

    LIU Hui-da, YUAN Xiao-ming, WANG Luan, et al. Research and new calculation formula of membrane penetration in wide graded gravel soils sample[J]. Chinese Journal of Rock Mechanics and Engineering, 2020. doi: 10.13722/j.cnki.jrme.2019.1216. (in Chinese)
    [24]
    TANAKA Y, KOKUSHO T, YOSHIDA Y, et al. Method for evaluating membrane compliance and system compliance in undrained cyclic shear tests[J]. Soils and Foundations, 1991, 31(3): 30-42.
    [25]
    MARTIN G R, FINN W D I, SEED H B. Foundamentals of Liquefaction under Cyclic Loading[J]. Journal of the Geotechnical Engineering Division ASCE, 1975, 101(GT6): 551-569.
    [26]
    BYRNE P M. A cyclic shear-volume coupling and pore pressure model for sand[C]//Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 1991, Saint Louis.
    [27]
    ISHIHARA K, TATSUOKA F, YASUDO S. Undrained deformation and liquefaction of sand under cyclic stresses[J]. Soils and Foundations, 1975, 15(1): 29-44.
    [28]
    王昆耀, 常亚屏, 陈宁. 饱和砂砾料液化特性的试验研究[J]. 水利学报, 2000(2): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200002006.htm

    WANG Kun-yao, CHANG Ya-ping, CHEN Ning. Experimental study of liquefaction characteristics of saturated sandy gravel[J]. Journal of Hydraulic Engineering, 2000(2): 37-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200002006.htm
    [29]
    王艳丽, 饶锡保, 王占彬, 等. 含砾量对饱和砂砾土液化特性的影响[J]. 地震工程学报, 2015, 37(2): 390-396. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201502018.htm

    WANG Yan-li, RAO Xi-bao, WANG Zhan-bin, et al. Effect of gravel content on liquefaction characteristics of saturated sandy gravels[J]. China Earthquake Engineering Journal, 2015, 37(2): 390-396. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201502018.htm
    [30]
    EVANS M D, ZHOU S. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298.
    [31]
    土工试验规程:SL237—1999[S]. 1999.

    Geotechnical Test Rules: SL237—1999[S]. 1999. (in Chinese)
    [32]
    丰万玲, 石兆吉. 判别水平土层液化势的孔隙水压力分析方法[J]. 工程抗震, 1988(4): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ198804006.htm

    FENG Wan-ling, SHI Zhao-ji. Pore pressure analysis method for estimating liquefaction potential of horizontal soil strata[J]. Earthquake Resistant, 1988(4): 32-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ198804006.htm
    [33]
    孙锐, 袁晓铭. 非均等固结下饱和砂土孔压增量简化计算公式[J]. 岩土工程学报, 2005, 27(9): 1021-1025. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200509009.htm

    SUN Rui, YUAN Xiao-ming. Simplified incremental formula for estimating pore pressure of saturated sands under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1021-1025. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200509009.htm
  • Related Articles

    [1]ZHOU Feng-xi, GAO Guo-yao. Multi-field coupling process of heat-moisture-salt in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 813-820. DOI: 10.11779/CJGE201905003
    [2]LI Pei-xian, WAN Hao-ming, XU Yue, YUAN Xue-qi, ZHAO Yin-peng. Parameter inversion of probability integration method using surface movement vector[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 767-776. DOI: 10.11779/CJGE201804022
    [3]WANG Chuan-wu, LI Shu-cai, NIE Li-chao, LIU Bin, GUO Qian, REN Yu-xiao, LIU Hai-dong. 3D E-SCAN resistivity inversion and optimized method in tunnel advanced prediction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 218-227. DOI: 10.11779/CJGE201702004
    [4]WANG Chuan-wu, LI Shu-cai, LIU Bin, NIE Li-chao, ZHANG Feng-kai, SONG Jie, GUO Qian, REN Yu-xiao. 3D constrained electrical resistivity inversion method based on reference model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1685-1694. DOI: 10.11779/CJGE201609016
    [5]LIU Zong-hui, WU Heng, ZHOU Dong, WEI Hong-yao. Application of spectrum inversion method in GPR signal processing for tunnel lining detection[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 711-717. DOI: 10.11779/CJGE201504017
    [6]LIU Bin, LI Shu-cai, NIE Li-chao, WANG Jing, SONG Jie, LIU Zheng-yu. Advanced detection of water-bearing geological structures in tunnels using 3D DC resistivity inversion tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1866-1876.
    [7]WANG Kui-hua, WANG Ning, LIU Kai, WU Wen-bing. Longitudinal vibration of piles in 3D axisymmetric soil based on fictitious soil pile method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 885-889.
    [8]LU Yanmei, CHEN Jiansheng, DONG Haizhou, CHEN Liang. Laplace solution for heat transfer model of dam leakage[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 274-278.
    [9]A polynomial regressive inverse method to determine rheologic parameters of soft soil[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 365-367.
    [10]Li Ning, Li Yonggang, Zhang Ping. A simulating inversion method for an opening in discrete rock masses[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 170-173.
  • Cited by

    Periodical cited type(15)

    1. 杨舒涵,漆天奇,刘嘉英. 堆石料宏细观力学特性离散元分析. 人民长江. 2024(02): 203-210 .
    2. LI Shuai,GU Tianfeng,WANG Jiading,WANG Fei,LI Pu. Regulation effect of the grille spacing of a funnel-type grating water–sediment separation structure on the debris flow performance. Journal of Mountain Science. 2024(07): 2283-2304 .
    3. 王辉,钮新强,马刚,周伟. 干湿循环作用下堆石料宏细观力学特性的离散元模拟研究. 岩土力学. 2024(S1): 665-676 .
    4. 张江浩,冀鸿兰,杨震,李志军,刘晓民. 冻融循环下黄河堤岸砂质壤土宏细观破坏过程. 河海大学学报(自然科学版). 2024(06): 69-80 .
    5. 黄志刚,王轩,傅力,童立红. 加载速率和摩擦系数对颗粒材料系统剪切强度的影响研究. 力学季刊. 2024(04): 1032-1042 .
    6. 栗培龙,宿金菲,孙胜飞,王霄,马云飞. 多级矿料-沥青体系的颗粒特性、界面效应及迁移行为研究进展. 中国公路学报. 2023(01): 1-15 .
    7. 王伟,张志义,赵博. 煤矿井下风积沙箱式充填体侧向约束机理数值研究. 新疆大学学报(自然科学版)(中英文). 2023(03): 367-372 .
    8. 肖浩波,漆天奇,杨舒涵,周伟,刘嘉英. 椭球颗粒体系宏、细观特性的3维离散元分析. 工程科学与技术. 2023(06): 78-86 .
    9. 张革,曹玲,王成汤. 考虑各向异性影响的冻土修正线性黏结接触模型开发及应用. 岩土力学. 2023(S1): 645-654 .
    10. 郑虎,牛文清,毛无卫,黄雨. 颗粒材料双轴压缩试验的光弹测试. 同济大学学报(自然科学版). 2023(11): 1719-1724 .
    11. 王怡舒,刘斯宏,沈超敏,陈静涛. 接触摩擦对颗粒材料宏细观力学特征和能量演变规律的影响. 岩石力学与工程学报. 2022(02): 412-422 .
    12. 雷云,刘源,徐同桐,何子苗. 粒间摩擦和层厚比对二维分层颗粒系统底部响应的影响. 科学技术与工程. 2022(07): 2585-2591 .
    13. 刘嘉英,周伟,姬翔,魏纲,袁思莹,李欣骏. 基于细观拓扑结构演化的颗粒材料剪胀性分析. 力学学报. 2022(03): 707-718 .
    14. 蒋明杰,栗书亚,吉恩跃,张小勇,朱俊高. 粗粒土大型静止侧压力系数测定试验的颗粒流模拟. 科学技术与工程. 2021(25): 10867-10872 .
    15. 崔溦,魏杰,王超,王枭华,张社荣. 考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟. 岩土工程学报. 2021(12): 2230-2239 . 本站查看

    Other cited types(14)

Catalog

    Article views PDF downloads Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return