• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Dai-mao, YAN Zhen-rui, TANG Xin-wei, MO Jian-hao, HUANG Hong-hao, LIU Ting-jin. Full-scale model tests and numerical investigations on bearing characteristics of superimposed lining structures under external loads[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2257-2263. DOI: 10.11779/CJGE202012012
Citation: LI Dai-mao, YAN Zhen-rui, TANG Xin-wei, MO Jian-hao, HUANG Hong-hao, LIU Ting-jin. Full-scale model tests and numerical investigations on bearing characteristics of superimposed lining structures under external loads[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2257-2263. DOI: 10.11779/CJGE202012012

Full-scale model tests and numerical investigations on bearing characteristics of superimposed lining structures under external loads

More Information
  • Received Date: February 29, 2020
  • Available Online: December 05, 2022
  • A full-scale mode test is proposed to study the transverse mechanical behaviors and deformation characteristics of segment-self compacted concrete (SCC)-steel superimposed linings. The deformation and mechanical response laws of composite lining structures under non-uniform external loads are revealed. Based on the 3D refined finite element model, the influences of studs, lining types and lateral pressure coefficient on the bearing capacity of the structures are discussed. The results show that the circumferential stress of the superimposed linings is lower than that of the separated ones under the action of non-uniform external loads, and the superimposed lining structures present a 'transverse ellipse’ deformation, and the deformation laws are more clear with the increase of load amplitude and non-uniformity. The studs can effectively enhance the interface performance of steel-SCC, but they have few effects on the circumferential stress of the structures.
  • [1]
    广东省水利电力勘测设计研究院. 珠江三角洲水资源配置工程初步设计报告[R]. 广州: 广东省水利电力勘测设计研究院, 2018.

    Guangdong Hydropower Planning and Design Institute. Preliminary Design Report of Water Resources Allocation Project in the Pearl River Delta[R]. Guangzhou: Guangdong Hydropower Planning and Design Institute, 2018. (in Chinese)
    [2]
    严振瑞, 秦晓川, 张武, 等. 珠江三角洲水资源配置工程输水盾构隧洞形式优化设计研究[M]//水工隧洞技术应用与发展. 北京: 中国水利水电出版社, 2018.

    YAN Zhen-rui, QIN Xiao-chuan, ZHANG Wu, et al. Study on the optimization design of shield tunnel for water resources allocation project in the Pearl River Delta[M]//Application and Development of Hydraulic Tunnel Technology. Beijing: China Water Power Press, 2018. (in Chinese)
    [3]
    杨光华, 李志云, 徐传堡, 等. 盾构隧洞复合衬砌的荷载结构共同作用模型[J]. 水力发电学报, 2018, 37(10): 20-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201810003.htm

    YANG Guang-hua, LI Zhi-yun, XU Chuan-bao, et al. Modeling load-structure interaction in shield tunnel composite lining[J]. Journal of Hydroelectric Engineering, 2018, 37(10): 20-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201810003.htm
    [4]
    YANG F, CAO S R, QIN G. Mechanical behavior of two kinds of prestressed composite linings: A case study of the Yellow River Crossing Tunnel in China[J]. Tunnelling and Underground Space Technology, 2018, 79: 96-109. doi: 10.1016/j.tust.2018.04.036
    [5]
    张常光, 胡云世, 赵均海, 等. 深埋圆形水工隧洞弹塑性应力和位移统一解[J]. 岩土工程学报, 2010, 32(11): 1738-1745. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201011020.htm

    ZHANG Chang-guang, HU Yun-shi, ZHAO Jun-hai, et al. Elastic-plastic unified solutions for stresses and displacements of a deep buried circular hydraulic tunnel[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1738-1745. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201011020.htm
    [6]
    FENG K, HE C, QIU Y, et al. Full-scale tests on bending behavior of segmental joints for large underwater shield tunnels[J]. Tunnelling and Underground Space Technology, 2018, 75: 100-116. doi: 10.1016/j.tust.2018.02.008
    [7]
    章青, 卓家寿. 盾构式输水隧洞的计算模型及其工程应用[J]. 水利学报, 1999(2): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB902.003.htm

    ZHANG Qing, ZHUO Jia-shou. A computational model of shield tunnel for water conveyance[J]. Journal of Hydraulic Engineering, 1999(2): 19-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB902.003.htm
    [8]
    YAN Q X, YAO C F, YANG W, et al. An improved numerical model of shield tunnel with double lining and its applications[J]. Advances in Materials Science and Engineering, 2015: 1-15.
    [9]
    王志国, 顾小兵, 程子悦, 等. 西江引水工程盾构输水隧洞设计[J]. 水利水电工程设计, 2016(1): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSG201601001.htm

    WANG Zhi-guo, GU Xiao-bin, CHENG Zi-yue, et al. Design of shield water conveyance tunnel in Xijiang Water Diversion Project[J]. Design of Water Resources & Hydroelectric Engineering, 2016(1): 1-3. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSG201601001.htm
    [10]
    ARNAU O, MOLINS C. Three dimensional structural response of segmental tunnel linings[J]. Engineering Structures, 2012, 44(6): 210-221.
    [11]
    张厚美, 过迟, 吕国梁. 盾构压力隧洞双层衬砌的力学模型研究[J]. 水利学报, 2001, 32(4): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200104004.htm

    ZHANG Hou-mei, GUO Chi, LÜ Guo-liang. Mechanical model for shield presure tunnel with secondary linings[J]. Journal of Hydraulic Engineering, 2001, 32(4): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200104004.htm
    [12]
    黄鸿浩. “管片-SCC-钢衬”叠合式衬砌体系足尺结构试验设计与抗外载特性研究[D]. 广州: 华南理工大学大学, 2019.

    HUANG Hong-hao. Full-scale Experimental Investigation on Bearing Characteristic of Segment-SCC -Steel Superimposed Lining Structure Subjected to External Pressure[D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
  • Related Articles

    [1]ZHOU Feng-xi, GAO Guo-yao. Multi-field coupling process of heat-moisture-salt in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 813-820. DOI: 10.11779/CJGE201905003
    [2]LI Pei-xian, WAN Hao-ming, XU Yue, YUAN Xue-qi, ZHAO Yin-peng. Parameter inversion of probability integration method using surface movement vector[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 767-776. DOI: 10.11779/CJGE201804022
    [3]WANG Chuan-wu, LI Shu-cai, NIE Li-chao, LIU Bin, GUO Qian, REN Yu-xiao, LIU Hai-dong. 3D E-SCAN resistivity inversion and optimized method in tunnel advanced prediction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 218-227. DOI: 10.11779/CJGE201702004
    [4]WANG Chuan-wu, LI Shu-cai, LIU Bin, NIE Li-chao, ZHANG Feng-kai, SONG Jie, GUO Qian, REN Yu-xiao. 3D constrained electrical resistivity inversion method based on reference model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1685-1694. DOI: 10.11779/CJGE201609016
    [5]LIU Zong-hui, WU Heng, ZHOU Dong, WEI Hong-yao. Application of spectrum inversion method in GPR signal processing for tunnel lining detection[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 711-717. DOI: 10.11779/CJGE201504017
    [6]LIU Bin, LI Shu-cai, NIE Li-chao, WANG Jing, SONG Jie, LIU Zheng-yu. Advanced detection of water-bearing geological structures in tunnels using 3D DC resistivity inversion tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1866-1876.
    [7]WANG Kui-hua, WANG Ning, LIU Kai, WU Wen-bing. Longitudinal vibration of piles in 3D axisymmetric soil based on fictitious soil pile method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 885-889.
    [8]LU Yanmei, CHEN Jiansheng, DONG Haizhou, CHEN Liang. Laplace solution for heat transfer model of dam leakage[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 274-278.
    [9]A polynomial regressive inverse method to determine rheologic parameters of soft soil[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 365-367.
    [10]Li Ning, Li Yonggang, Zhang Ping. A simulating inversion method for an opening in discrete rock masses[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 170-173.
  • Cited by

    Periodical cited type(15)

    1. 杨舒涵,漆天奇,刘嘉英. 堆石料宏细观力学特性离散元分析. 人民长江. 2024(02): 203-210 .
    2. LI Shuai,GU Tianfeng,WANG Jiading,WANG Fei,LI Pu. Regulation effect of the grille spacing of a funnel-type grating water–sediment separation structure on the debris flow performance. Journal of Mountain Science. 2024(07): 2283-2304 .
    3. 王辉,钮新强,马刚,周伟. 干湿循环作用下堆石料宏细观力学特性的离散元模拟研究. 岩土力学. 2024(S1): 665-676 .
    4. 张江浩,冀鸿兰,杨震,李志军,刘晓民. 冻融循环下黄河堤岸砂质壤土宏细观破坏过程. 河海大学学报(自然科学版). 2024(06): 69-80 .
    5. 黄志刚,王轩,傅力,童立红. 加载速率和摩擦系数对颗粒材料系统剪切强度的影响研究. 力学季刊. 2024(04): 1032-1042 .
    6. 栗培龙,宿金菲,孙胜飞,王霄,马云飞. 多级矿料-沥青体系的颗粒特性、界面效应及迁移行为研究进展. 中国公路学报. 2023(01): 1-15 .
    7. 王伟,张志义,赵博. 煤矿井下风积沙箱式充填体侧向约束机理数值研究. 新疆大学学报(自然科学版)(中英文). 2023(03): 367-372 .
    8. 肖浩波,漆天奇,杨舒涵,周伟,刘嘉英. 椭球颗粒体系宏、细观特性的3维离散元分析. 工程科学与技术. 2023(06): 78-86 .
    9. 张革,曹玲,王成汤. 考虑各向异性影响的冻土修正线性黏结接触模型开发及应用. 岩土力学. 2023(S1): 645-654 .
    10. 郑虎,牛文清,毛无卫,黄雨. 颗粒材料双轴压缩试验的光弹测试. 同济大学学报(自然科学版). 2023(11): 1719-1724 .
    11. 王怡舒,刘斯宏,沈超敏,陈静涛. 接触摩擦对颗粒材料宏细观力学特征和能量演变规律的影响. 岩石力学与工程学报. 2022(02): 412-422 .
    12. 雷云,刘源,徐同桐,何子苗. 粒间摩擦和层厚比对二维分层颗粒系统底部响应的影响. 科学技术与工程. 2022(07): 2585-2591 .
    13. 刘嘉英,周伟,姬翔,魏纲,袁思莹,李欣骏. 基于细观拓扑结构演化的颗粒材料剪胀性分析. 力学学报. 2022(03): 707-718 .
    14. 蒋明杰,栗书亚,吉恩跃,张小勇,朱俊高. 粗粒土大型静止侧压力系数测定试验的颗粒流模拟. 科学技术与工程. 2021(25): 10867-10872 .
    15. 崔溦,魏杰,王超,王枭华,张社荣. 考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟. 岩土工程学报. 2021(12): 2230-2239 . 本站查看

    Other cited types(14)

Catalog

    Article views (265) PDF downloads (113) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return