• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DENG Shu-xin, WANG Ming-yang, LI Jie, ZHANG Guo-kai, WANG Zhen. Mechanism and simulation experiment of slip-type rock bursts triggered by impact disturbances[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2215-2221. DOI: 10.11779/CJGE202012007
Citation: DENG Shu-xin, WANG Ming-yang, LI Jie, ZHANG Guo-kai, WANG Zhen. Mechanism and simulation experiment of slip-type rock bursts triggered by impact disturbances[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2215-2221. DOI: 10.11779/CJGE202012007

Mechanism and simulation experiment of slip-type rock bursts triggered by impact disturbances

More Information
  • Received Date: May 05, 2020
  • Available Online: December 05, 2022
  • The slip-type rock burst caused by the sliding of structural surfaces is sensitive to external disturbances and may release huge energy. Once it occurs, it may have catastrophic consequences for construction workers and engineering equipments. Using the self-developed test device and the high-speed photography technology, the whole process of the slip-type rock bursts from initial sliding to slip instability under impact disturbance is simulated. The mechanism is discussed from three aspects including external causes, internal causes and incentives. After an external impact, the propagation of stress waves in the blocky rock masses can lead to the reduction of friction, which is known as the ultra-low friction phenomenon. Once the friction force of structural planes reduces to a value less than the initial shear force of the structural plane, the rock block begins to slip. If the final dynamic friction force is still less than the shear force, the rock block will continue to slip, causing the blocky rock masses to be instable and collapse, namely a slip-type rock burst. The sliding motion between rock blocks induced by impact disturbance is closely related to the initial stress level of structural surfaces. A dimensionless energy parameter is introduced to characterize the critical energy condition of slip-type rock bursts induced by dynamic disturbances, and the quantitative relationship between the energy parameter and the initial stress state of the structural plane is given. It is concluded that three conditions need to be met for the occurrence of slip-type rock bursts: there are weak structural planes (internal causes) in the block rock mass, the stress conditions on the structural planes are close to the critical state (external causes), and the dynamic disturbance causes the shear strength of the structural plane to decrease (incentives).
  • [1]
    冯夏庭. 岩爆孕育过程的机制、预警与动态调控[M]. 北京: 科学出版社, 2013.

    FENG Xia-ting. The Mechanism of Rockburst Gestation Process, Early Warning and Dynamic Regulation[M]. Beijing: Science Press, 2013. (in Chinese)
    [2]
    张镜剑, 傅冰骏. 岩爆及其判据和防治[J]. 岩石力学与工程学报, 2008, 27(10): 2034-2042. doi: 10.3321/j.issn:1000-6915.2008.10.010

    ZHANG Jing-jian, FU Bing-jun. Rockburst and its criterion and prevention[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 2034-2042. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.10.010
    [3]
    蔡美峰, 冀东, 郭奇峰. 基于地应力现场实测与开采扰动能量积聚理论的岩爆预测研究[J]. 岩石力学与工程学报, 2013, 32(10): 1973-1980. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310003.htm

    CAI Mei-feng, JI Dong, GUO Qi-feng. Research on rockburst prediction based on in-situ stress measurement and mining disturbance energy accumulation theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10): 1973-1980. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310003.htm
    [4]
    姜耀东, 赵毅鑫. 我国煤矿冲击地压的研究现状:机制,预警与控制[J]. 岩石力学与工程学报, 2015, 34(11): 2188-2204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511003.htm

    JIANG Yao-dong, ZHAO Yi-xin. Research status of coal mine rock burst in China: mechanism, early warning and control[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2188-2204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201511003.htm
    [5]
    钱七虎. 岩爆、冲击地压的定义、机制、分类及其定量预测模型[J]. 岩土力学, 2014(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401001.htm

    QIAN Qi-hu. Definition, mechanism, classification and quantitative prediction model of rock burst and rock burst[J]. Rock and Soil Mechanics, 2014(1): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401001.htm
    [6]
    RYDER J A. Excess shear stress in the assessment of geologically hazardous situations[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1988, 88(1): 27-39.
    [7]
    周辉, 孟凡震, 张传庆, 等. 结构面剪切破坏特性及其在滑移型岩爆研究中的应用[J]. 岩石力学与工程学报, 2015, 34(9): 1729-1738. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509002.htm

    ZHOU Hui, MENG Fan-zhen, ZHANG Chuan-qing, et al. Characteristics of shear failure of structural plane and slip rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1729-1738. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509002.htm
    [8]
    周辉, 孟凡震, 张传庆, 等. 深埋硬岩隧洞岩爆的结构面作用机制分析[J]. 岩石力学与工程学报, 2015, 34(4): 720-727. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504008.htm

    ZHOU Hui, MENG Fan-zhen, ZHANG Chuan-qing, et al. Shear failure characteristics of structural plane and its application in the study of sliding rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 720-727. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504008.htm
    [9]
    陈宗基. 岩爆的工程实录,理论与控制[J]. 岩石力学与工程学报, 1987, 6(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX198701001.htm

    CHEN Zong-ji. Engineering record of rockburst, theory and control[J]. Chinese Journal of Rock Mechanics and Engineering, 1987, 6(1): 1-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX198701001.htm
    [10]
    WHYATT J K, BOARD M P. Strain softening model for representing shear failure in continuous rock masses[C]//Proc 2nd International Symposium on Rockbursts and Seismicity in Mines, 1991, Minneapolis.
    [11]
    KAISER P K. Canadian Rockburst Support Handbook: 1996[M]. Sudbury: Geomechanics Research Centre, 1996.
    [12]
    何满潮, 刘冬桥, 宫伟力, 等. 冲击岩爆试验系统研发及试验[J]. 岩石力学与工程学报, 2014(9): 1729-1739. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409001.htm

    HE Man-chao, LIU Dong-qiao, GONG Wei-li, et al. Development and test of impact rock burst test system[J]. Chinese Journal of Rock Mechanics and Engineering, 2014(9): 1729-1739. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409001.htm
    [13]
    李夕兵, 宫凤强, 杜坤, 等. 高应力岩体动力扰动下发生岩爆的试验研究进展报告[J]. 科技创新导报, 2016(15): 173. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201615095.htm

    LI Xi-bing, GONG Feng-qiang, DU Kun, et al. Progress report of experimental research on rockburst under dynamic stress of high stress rock mass[J]. Science and Technology Innovation Guide, 2016(15): 173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXDB201615095.htm
    [14]
    苏国韶, 胡李华, 冯夏庭, 等. 低频周期扰动荷载与静载联合作用下岩爆过程的真三轴试验研究[J]. 岩石力学与工程学报, 2016(7): 1309-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607002.htm

    SU Guo-shao, HU Li-hua, FENG Xia-ting, et al. True triaxial test study on rock burst process under the combined action of low frequency periodic disturbance load and static load[J]. Chinese Journal of Rock Mechanics and Engineering, 2016(7): 1309-1322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607002.htm
    [15]
    朱万成, 左宇军, 尚世明, 等. 动态扰动触发深部巷道发生失稳破裂的数值模拟[J]. 岩石力学与工程学报, 2007(5): 915-921. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200705006.htm

    ZHU Wan-cheng, ZUO Yu-jun, SHANG Shi-ming, et al. Numerical simulation of instability and cracking in deep roadways triggered by dynamic disturbance[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(5): 915-921. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200705006.htm
    [16]
    潘一山, 章梦涛, 李国臻. 稳定性动力准则的圆形洞室岩爆分析[J]. 岩土工程学报, 1993(5): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199305006.htm

    PAN Yi-shan, ZHANG Meng-tao, LI Guo-zhen. Rockburst analysis of circular caverns with dynamic stability criterion[J]. Chinese Journal of Geotechnical Engineering, 1993(5): 59-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199305006.htm
    [17]
    宫凤强, 罗勇, 司雪峰, 等. 深部圆形隧洞板裂屈曲岩爆的模拟试验研究[J]. 岩石力学与工程学报, 2017, 36(7): 1634-1648. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201707008.htm

    GONG Feng-qiang, LUO Yong, SI Xue-feng, et al. Simulation test study on slab buckling rock burst of deep circular tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1634-1648. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201707008.htm
    [18]
    何满潮, 赵菲, 杜帅, 等. 不同卸载速率下岩爆破坏特征试验分析[J]. 岩土力学, 2014, 35(10): 2737-2747. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201410001.htm

    HE Man-chao, ZHAO Fei, DU Shuai, et al. Experimental analysis of rockburst failure characteristics under different unloading rates[J]. Rock and Soil Mechanics, 2014, 35(10): 2737-2747. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201410001.htm
    [19]
    周小平, 钱七虎. 深部裂隙岩体岩爆定量预测模型[C]//新观点新学说学术沙龙文集51:岩爆机理探索, 2010, 北京.

    ZHOU Xiao-ping, QIAN Qi-hu. Quantitative prediction model of rock burst in deep fractured rock mass[C]//New Perspectives and New Doctrine Academic Salon Collection 51: Exploration of Rock Burst Mechanism, 2010, Beijing. (in Chinese)
    [20]
    MA G W, AN X M, WANG M Y. Analytical study of dynamic friction mechanism in blocky rock systems[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(5): 946-951.
    [21]
    KURLENYA M V, OPARIN V N. Problems of nonlinear geomechanics. part II[J]. Journal of Mining Science, 2000, 36(4): 305-326.
    [22]
    李杰, 周益春, 蒋海明, 等. 非线性摆型波问题的提出及科研仪器研制[J]. 湘潭大学自然科学学报, 2017, 39(4): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XYDZ201704006.htm

    LI Jie, ZHOU Yi-chun, JIANG Hai-ming, et al. Proposal of nonlinear pendulum wave problem and research instrument development[J]. Journal of Natural Science of Xiangtan University, 2017, 39(4): 22-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XYDZ201704006.htm
    [23]
    KURLENYA M V, OPARIN V N, VOSTRIKOV V I, et al. Pendulum waves Part III: data of on-site observations[J]. Journal of Mining Science, 1996, 32(5): 341-361.
  • Related Articles

    [1]ZHOU Feng-xi, GAO Guo-yao. Multi-field coupling process of heat-moisture-salt in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 813-820. DOI: 10.11779/CJGE201905003
    [2]LI Pei-xian, WAN Hao-ming, XU Yue, YUAN Xue-qi, ZHAO Yin-peng. Parameter inversion of probability integration method using surface movement vector[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 767-776. DOI: 10.11779/CJGE201804022
    [3]WANG Chuan-wu, LI Shu-cai, NIE Li-chao, LIU Bin, GUO Qian, REN Yu-xiao, LIU Hai-dong. 3D E-SCAN resistivity inversion and optimized method in tunnel advanced prediction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 218-227. DOI: 10.11779/CJGE201702004
    [4]WANG Chuan-wu, LI Shu-cai, LIU Bin, NIE Li-chao, ZHANG Feng-kai, SONG Jie, GUO Qian, REN Yu-xiao. 3D constrained electrical resistivity inversion method based on reference model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1685-1694. DOI: 10.11779/CJGE201609016
    [5]LIU Zong-hui, WU Heng, ZHOU Dong, WEI Hong-yao. Application of spectrum inversion method in GPR signal processing for tunnel lining detection[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 711-717. DOI: 10.11779/CJGE201504017
    [6]LIU Bin, LI Shu-cai, NIE Li-chao, WANG Jing, SONG Jie, LIU Zheng-yu. Advanced detection of water-bearing geological structures in tunnels using 3D DC resistivity inversion tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1866-1876.
    [7]WANG Kui-hua, WANG Ning, LIU Kai, WU Wen-bing. Longitudinal vibration of piles in 3D axisymmetric soil based on fictitious soil pile method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 885-889.
    [8]LU Yanmei, CHEN Jiansheng, DONG Haizhou, CHEN Liang. Laplace solution for heat transfer model of dam leakage[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 274-278.
    [9]A polynomial regressive inverse method to determine rheologic parameters of soft soil[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 365-367.
    [10]Li Ning, Li Yonggang, Zhang Ping. A simulating inversion method for an opening in discrete rock masses[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 170-173.
  • Cited by

    Periodical cited type(15)

    1. 杨舒涵,漆天奇,刘嘉英. 堆石料宏细观力学特性离散元分析. 人民长江. 2024(02): 203-210 .
    2. LI Shuai,GU Tianfeng,WANG Jiading,WANG Fei,LI Pu. Regulation effect of the grille spacing of a funnel-type grating water–sediment separation structure on the debris flow performance. Journal of Mountain Science. 2024(07): 2283-2304 .
    3. 王辉,钮新强,马刚,周伟. 干湿循环作用下堆石料宏细观力学特性的离散元模拟研究. 岩土力学. 2024(S1): 665-676 .
    4. 张江浩,冀鸿兰,杨震,李志军,刘晓民. 冻融循环下黄河堤岸砂质壤土宏细观破坏过程. 河海大学学报(自然科学版). 2024(06): 69-80 .
    5. 黄志刚,王轩,傅力,童立红. 加载速率和摩擦系数对颗粒材料系统剪切强度的影响研究. 力学季刊. 2024(04): 1032-1042 .
    6. 栗培龙,宿金菲,孙胜飞,王霄,马云飞. 多级矿料-沥青体系的颗粒特性、界面效应及迁移行为研究进展. 中国公路学报. 2023(01): 1-15 .
    7. 王伟,张志义,赵博. 煤矿井下风积沙箱式充填体侧向约束机理数值研究. 新疆大学学报(自然科学版)(中英文). 2023(03): 367-372 .
    8. 肖浩波,漆天奇,杨舒涵,周伟,刘嘉英. 椭球颗粒体系宏、细观特性的3维离散元分析. 工程科学与技术. 2023(06): 78-86 .
    9. 张革,曹玲,王成汤. 考虑各向异性影响的冻土修正线性黏结接触模型开发及应用. 岩土力学. 2023(S1): 645-654 .
    10. 郑虎,牛文清,毛无卫,黄雨. 颗粒材料双轴压缩试验的光弹测试. 同济大学学报(自然科学版). 2023(11): 1719-1724 .
    11. 王怡舒,刘斯宏,沈超敏,陈静涛. 接触摩擦对颗粒材料宏细观力学特征和能量演变规律的影响. 岩石力学与工程学报. 2022(02): 412-422 .
    12. 雷云,刘源,徐同桐,何子苗. 粒间摩擦和层厚比对二维分层颗粒系统底部响应的影响. 科学技术与工程. 2022(07): 2585-2591 .
    13. 刘嘉英,周伟,姬翔,魏纲,袁思莹,李欣骏. 基于细观拓扑结构演化的颗粒材料剪胀性分析. 力学学报. 2022(03): 707-718 .
    14. 蒋明杰,栗书亚,吉恩跃,张小勇,朱俊高. 粗粒土大型静止侧压力系数测定试验的颗粒流模拟. 科学技术与工程. 2021(25): 10867-10872 .
    15. 崔溦,魏杰,王超,王枭华,张社荣. 考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟. 岩土工程学报. 2021(12): 2230-2239 . 本站查看

    Other cited types(14)

Catalog

    Article views PDF downloads Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return