• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Kui, YANG Dao-xue, ZENG Peng, DING Jian-hua, GONG Cong, WANG Xiao-jun, ZHONG Wen. Frequency-domain characteristics of acoustic signals of granite under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2189-2197. DOI: 10.11779/CJGE202012004
Citation: ZHAO Kui, YANG Dao-xue, ZENG Peng, DING Jian-hua, GONG Cong, WANG Xiao-jun, ZHONG Wen. Frequency-domain characteristics of acoustic signals of granite under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2189-2197. DOI: 10.11779/CJGE202012004

Frequency-domain characteristics of acoustic signals of granite under uniaxial compression

More Information
  • Received Date: February 29, 2020
  • Available Online: December 05, 2022
  • Instabilities that have the potential to cause rock failures are serious engineering problems that can lead to geological disasters. In this study, a uniaxial compression acoustic test is conducted to explore the precursors of instability failures in granite, and the evolution characteristics of the accompanying acoustic emission (AE) and infrasound signals are evaluated in the frequency domain. The experimental results show that the AE events below 100 kHz decrease gradually before the peak failure of granite specimens, while the AE events above 250 kHz increase gradually. The average frequency centroid of rock specimens undergoes a "relative rising period" and a "relative stable period" before the peak failure, which occurrs during the relative stable period. The dominant frequencies between 5 to 15 Hz of infrasound signals are about 62.5% of the total on average. When the relative stress level before the point of peak stress is more than 80%, the infrasound signal proportion in the first and third frequency bands is at its lowest, whereas the proportion in the second frequency band is at its highest. Finally, the dominant frequency of infrasound signal in the process of granite deformation and failure is fractal-processed, and it is found that the fractal dimension of the dominant frequency of infrasound signal decreases to the minimum value before the peak stress. The above characteristics of acoustic signal before the peak stress can be regarded as the precursory features of the critical failure.
  • [1]
    何满朝, 钱七虎. 深部岩石力学基础[M]. 北京: 科学出版社, 2010.

    HE Man-cao, QIAN Qi-hu. The Basis of Deep Rock Mechanics[M]. Beijing: Science Press, 2010. (in Chinese)
    [2]
    HE M C. Rock mechanics and hazard control in deep mining engineering in China[C]//In Rock Mechanics In Underground Construction: (With CD-ROM). 2006.
    [3]
    BULASHEVICH Y P, UTKIN V I, YURKOV A K, et al. Possibility to predict the time of rock bursts from radon emanation variations[J]. Gornyi Zhurnal, 1996, 6: 33-37.
    [4]
    MARUYAMA T, SHINAGAWA H. Infrasonic sounds excited by seismic waves of the 2011 Tohoku-oki earthquake as visualized in ionograms[J]. Journal of Geophysical Research: Space Physics, 2014, 119(5): 4094-4108. doi: 10.1002/2013JA019707
    [5]
    KIM J S, LEE K S, CHO W J, et al. A comparative evaluation of stress-strain and acoustic emission methods for quantitative damage assessments of brittle rock[J]. Rock Mechanics and Rock Engineering, 2015, 48: 495-508. doi: 10.1007/s00603-014-0590-0
    [6]
    LIANG Y P, LI Q M, GU Y L, et al. Mechanical and acoustic emission characteristics of rock: effect of loading and unloading confining pressure at the post-peak stage[J]. Journal of Natural Gas Science and Engineering, 2017, 44: 54-64. doi: 10.1016/j.jngse.2017.04.012
    [7]
    PETRUZALEK M, LOKAJICEK T, SVITEK T, et al. Fracturing of migmatite monitored by acoustic emission and ultrasonic sounding[J]. Rock Mechanics and Rock Engineering, 2019, 52: 47-59. doi: 10.1007/s00603-018-1590-2
    [8]
    FLORIAN A, YVES L G, MONTSE S, et al. Analysis of acoustic emissions recorded during a mine by experiment in an underground research laboratory in clay shales[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 51-59. doi: 10.1016/j.ijrmms.2018.04.021
    [9]
    李朝安, 王良玮, 廖凯, 等. 山区铁路沿线泥石流灾害预警研究[J]. 岩石力学与工程学报, 2014, 33(增刊2): 3810-3816. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2053.htm

    LI Chao-an, WANG Liang-wei, LIAO Kai, et al. Study of early warning mechanism of debris flow of along railway line in mountainous areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 3810-3816. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2053.htm
    [10]
    孟亮, 李夕海, 刘代志. 远程事件次声监测中的信号参数二维子空间计算方法[J]. 地球物理学报, 2017, 60(2): 678-687. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201702021.htm

    MENG Liang, LI Xi-hai, LIU Dai-zhi. Two-dimensional subspace algorithm for the slowness and azimuth of infrasound signals in the distant events monitoring[J]. Chinese Journal of Geophysics, 2017, 60(2): 678-687. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201702021.htm
    [11]
    徐洪, 周廷强. 岩石变形破坏次声异常的能量特征研究[J]. 岩土工程学报, 2016, 38(6): 1044-1050. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201606010.htm

    XU Hong, ZHOU Ting-qiang. Energy characteristics of infrasound abnormality during rock deformation and failure of rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1044-1050. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201606010.htm
    [12]
    MATOZA R S, HEDLIN M A H, MILTON A. An infrasound array study of Mount St. Helens[J]. Journal of Volcanology & Geothermal Research, 2007, 160(3): 249-262.
    [13]
    SCOTT E D, HAYWARD C T, KUBICHEK R F, et al. Single and multiple sensor identify-cation of avalanche-generated infrasound[J]. Cold Regions Science & Technology, 2007, 47(2): 160-170.
    [14]
    ZHU X, XU Q, ZHOU J, et al. Experimental study of infrasonic signal generation during rock fracture under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60(2): 37-46.
    [15]
    朱星, 许强, 汤明高, 等. 典型岩石破裂产生次声波试验研究[J]. 岩土力学, 2013, 34(5): 1306-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305012.htm

    ZHU Xing, XU Qiang, TANG Ming-gao, et al. Experimental study of infrasound wave generated by typical rock fracture[J]. Rock and Soil Mechanics, 2013, 34(5): 1306-1312. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305012.htm
    [16]
    LAVROV A, VERVOORT A, FILIMONOV Y, et al. Acoustic emission in host-rock material for radioactive waste disposal: comparison between clay and rock salt[J]. Bulletin of Engineering Geology and the Environment, 2012, 61(4): 379-387.
    [17]
    ZHANG M W, SHIMADA H, SASAOKA T, et al. Evolution and effect of the stress concentration and rock failure in the deep multi-seam coal mining[J]. Environmental Earth Sciences, 2014, 72: 629-643.
    [18]
    邓建辉, 李林芮, 陈菲, 等. 大理岩破坏的声发射双主频特征及其机制初探[J]. 工程科学与技术, 2018, 50(5): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201805002.htm

    DENG Jian-hui, LI Lin-rui, CHEN Fei, et al. Twin-peak frequencies of acoustic emission due to the fracture of marble and their possible mechanism[J]. Advanced Engineering Sciences, 2018, 50(5): 12-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201805002.htm
    [19]
    ZHANG Z H, DENG J H, ZHU J B, et al. An experimental investigation of the failure mechanisms of jointed and intact marble under compression based on quantitative analysis of acoustic emission waveforms[J]. Rock Mechanics and Rock Engineering, 2018, 51(7): 2299-2307.
    [20]
    WONG L N Y, GUO T Y. Microcracking behavior of two semi-circular bend specimens in mode I fracture toughness test of granite[J]. Engineering Fracture Mechanics, 2019, 221: 106565.
    [21]
    MENG Q B, ZHANG M W, HAN L J, et al. Acoustic emission characteristics of red sandstone specimens under uniaxial cyclic loading and unloading compression[J]. Rock Mechanics and Rock Engineering, 2018, 51: 969-988.
    [22]
    范虹. 非平稳信号特征提取方法及其应用[M]. 北京: 科学出版社, 2012.

    FAN Hong. Nonstationary Signal Feature Extraction Method and Its Application[M]. Beijing: Science Press, 2012. (in Chinese)
    [23]
    曾鹏, 刘阳军, 纪洪广, 等. 单轴压缩下粗砂岩临界破坏的多频段声发射耦合判据和前兆识别特征[J]. 岩土工程学报, 2017, 39(3): 509-517. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703021.htm

    ZENG Peng, LIU Yang-jun, JI Hong-guang, et al. Coupling criteria and precursor identify- cation characteristics of multi-band acoustic emission of gritstone fracture under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 509-517. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201703021.htm
    [24]
    赵奎, 王更峰, 王晓军, 等. 岩石声发射Kaiser点信号频带能量分布和分形特征研究[J]. 岩土力学, 2008, 29(11): 3082-3088. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200811039.htm

    ZHAO Kui, WANG Geng-feng, WANG Xiao-jun, et al. Research on energy distributions and fractal characteristics of Kaiser signal of acoustic emission in rock[J]. Rock and Soil Mechanics, 2008, 29(11): 3082-3088. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200811039.htm
    [25]
    汪富泉, 罗朝盛, 陈国先. G-P算法的改进及其应用[J]. 计算物理, 1993, 10(3): 345-351. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL199303011.htm

    WANG Fu-quan, LUO Chao-sheng, CHEN Guo-xian. An improvement of G-P algorithm and its application[J]. Chinese Journal of Computational Physics, 1993, 10(3): 345-351. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL199303011.htm
    [26]
    曾鹏, 纪洪广, 高宇, 等. 三轴压缩下花岗岩声发射Kaiser点信号频段及分形特征[J]. 煤炭学报, 2016, 41(增刊2): 376-384. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2016S2013.htm

    ZENG Peng, JI Hong-guang, GAO Yu, et al. Characteristics of fractal and frequency bands at Kaiser signal of acoustic emission in granite under triaxial compression[J]. Journal of China Coal Society, 2016, 41(S2): 376-384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2016S2013.htm
    [27]
    赵奎, 周永涛, 曾鹏, 等. 三点弯曲作用下不同粒径组成的类岩石材料声发射特性试验研究[J]. 煤炭学报, 2018, 43(11): 3107-3114. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201811018.htm

    ZHAO Kui, ZHOU Yong-tao, ZENG Peng, et al. Experimental study on acoustic emission characteristics of rock-like materials with different particle sizes under three points bending[J]. Journal of China Coal Society, 2018, 43(11): 3107-3114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201811018.htm
    [28]
    赵奎, 杨泽元, 曾鹏, 等. 单轴压缩下尾砂胶结充填材料次声波特性试验研究[J]. 煤炭学报, 2019, 44(增刊1): 92-100. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2019S1010.htm

    ZHAO Kui, YANG Ze-yuan, ZENG Peng, et al. Infrasound characteristics of cemented tailing filling material under uniaxial compression[J]. Journal of China Coal Society, 2019, 44(S1): 92-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2019S1010.htm
    [29]
    丛宇, 冯夏庭, 郑颖人, 等. 不同应力路径大理岩声发射破坏前兆的试验研究[J]. 岩土工程学报, 2016, 38(7): 1193-1201. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607005.htm

    CONG Yu, FENG Xia-ting, ZHENG Ying-ren, et al. Experimental study on acoustic emission failure precursors of marble under different stress paths[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1193-1201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607005.htm
  • Cited by

    Periodical cited type(2)

    1. 张子洋,汪波,刘锦超,刘金炜,杨凯. 后注浆预应力树脂锚杆应力损失后注浆段效用分析. 铁道科学与工程学报. 2025(02): 783-794 .
    2. 谈博海,姚囝,杜键,孙明伟,刘海,关文超. 膨胀型浆体注浆锚杆拉拔力学特性及损伤失效机制研究. 岩石力学与工程学报. 2024(12): 3058-3069 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return