• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Ling, ZHANG Xu-bo, XU Ze-yu, OU Qiang. Stress and deformation analysis of geosynthetic-encased stone columns based on symplectic system[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2040-2049. DOI: 10.11779/CJGE202011009
Citation: ZHANG Ling, ZHANG Xu-bo, XU Ze-yu, OU Qiang. Stress and deformation analysis of geosynthetic-encased stone columns based on symplectic system[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2040-2049. DOI: 10.11779/CJGE202011009

Stress and deformation analysis of geosynthetic-encased stone columns based on symplectic system

More Information
  • Received Date: March 23, 2020
  • Available Online: December 05, 2022
  • Due to the hoop effect of geogrids, the stress and deformation mechanism of geosynthetic-encased stone columns (GESCs) is more complex than that of the ordinary stone columns. In this study, the stress and deformation of a single GESC is regarded as a space axisymmetric problem. Based on the symplectic system theory, a symplectic dual equation considering the shear stress of the cross section of the column is formulated, the variables of the equation are separated, and the distribution functions for the settlement and radial deformation of GESCs are finally obtained according to the boundary conditions. The rationality and feasibility of this method are verified by the practical example, and the parameter analysis shows that the settlement and bulging of GESCs decrease with the increase of encasement stiffness. They increase with the increase of pile-soil stress ratio, but the growth rate decreases gradually. They decrease with the increase of encasement depth, but no longer change when they exceed the optimal encasement depth. The optimal encasement depth increases with the increase of load and pile spacing, and with the decrease of lateral pressure coefficient.
  • [1]
    VAN IMPE W F. Soil improvement techniques and their evolution[J]. Animal Science Papers. Sd Reports, DOI: http://dx.doi.org/1989.
    [2]
    赵明华, 何玮茜, 衡帅, 等. 基于圆孔扩张理论的筋箍碎石桩承载力计算方法研究[J]. 岩土工程学报, 2017, 39(10): 1785-1792. doi: 10.11779/CJGE201710005

    ZHAO Ming-hua, HE Wei-xi, HENG Shuai, et al. Calculation method of geogrid-encased stone columns' bearing capacity based on cavity expansion theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1785-1792. (in Chinese) doi: 10.11779/CJGE201710005
    [3]
    RAITHEL M, KEMPFERT H G. Calculation models for dam foundations with geosynthetic coated sand columns[C]//Geotechnical and Geological Engineering, 2000, Lisbon.
    [4]
    DUAN Y Y, ZHANG Y P, CHAN D, et al. Theoretical elastoplastic analysis for foundations with geosynthetic-encased columns[J]. Journal of Zhejiang University SCIENCE A, 2012, 13(7): 506-518. doi: 10.1631/jzus.A1100334
    [5]
    ZHANG L, ZHAO M. Deformation analysis of geotextile-encased stone columns[J]. International Journal of Geomechanics, 2015, 15(3): 1-10.
    [6]
    KONG G Q, ZHOU Y, LIU H L. Nonlinear model analysis of radial bulging deformation of geosynthetic-encased stone columns[J]. International Journal of Geomechanics, 2018, 18(10): 1-12.
    [7]
    PULKO B, MAJES B, LOGAR J. Geosynthetic-encased stone columns: analytical calculation model[J]. Geotextiles and Geomembranes, 2011, 29(1): 29-39. doi: 10.1016/j.geotexmem.2010.06.005
    [8]
    ZHOU Y, KONG G Q. Deformation analysis of a geosynthetic-encased stone column and surrounding soil using cavity-expansion model[J]. International Journal of Geomechanics, 2019, 19(5): 1-12.
    [9]
    赵明华, 牛浩懿, 刘猛, 等. 柔性基础下碎石桩复合地基桩土应力比及沉降计算[J]. 岩土工程学报, 2017, 39(9): 1549-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201709002.htm

    ZHAO Ming-hua, NIU Hao-yi, LIU Meng, et al. Pile-soil stress ratio and settlement of composite ground with gravel piles in flexible foundation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1549-1556. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201709002.htm
    [10]
    钟万勰. 弹性力学求解新体系[M]. 大连: 大连理工大学出版社, 1995.

    ZHONG Wan-xie. A New Systematic Methodology for Theory of Elasticity[M]. Dalian: Dalian University of Technology Press, 1995. (in Chinese)
    [11]
    徐芝纶. 弹性力学(上册)[M]. 北京: 高等教育出版社, 2006.

    XU Zhi-lun. Elastic Mechanics (I)[M]. Beijing: Higher Education Press, 2006. (in Chinese)
    [12]
    ZHANG W X, CUI W H, XAIO Z R, et al. The quasi-static analysis for the viscoelastic hollow circular cylinder using the symplectic system method[J]. International Journal of Engineering Science, 2010, 48: 727-741. doi: 10.1016/j.ijengsci.2010.03.003
    [13]
    弗洛林 В А. 土力学原理(第一卷)[M]. 徐志英,译.北京: 中国建筑工业出版社, 1973: 87-88.

    ФЛОРИНB A. Fundamentals of Soil Mechanics (First volume)[M]. XU Zhi-ying, trans. Beijing: China Architecture and Building Press, 1973: 87-88. (in Chinese)
    [14]
    MALARVIZHI , ILAMPARUTHI . Comparative study on the behavior of encased stone column and conventional stone column[J]. Soils and Foundations, 2007, 47(5): 873-885.
    [15]
    YOO C, LEE D. Performance of geogrid-encased stone columns in soft ground: Full-scale load tests[J]. Geosynthetics International, 2012, 19(6): 480-490. doi: 10.1680/gein.12.00033
    [16]
    龚晓南. 复合地基设计和施工指南[M]. 北京: 人民交通出版社, 2003: 109-110.

    GONG Xiao-nan. Composite Foundation Design and Construction Guideline[M]. Beijing: People's Transportation Press, 2003: 109-110. (in Chinese)
    [17]
    WU C S, HONG Y S. The behavior of a laminated reinforced granular column[J]. Geotextiles and Geomembranes, 2008, 26(4): 302-316. doi: 10.1016/j.geotexmem.2007.12.003
    [18]
    赵明华. 土力学与基础工程[M]. 第4版. 武汉: 武汉理工大学出版社, 2014.

    ZHAO Ming-hua. Soil Mechanics and Foundation Engineering[M]. 4th ed. Wuhan: Wuhan University of Technology Press, 2014. (in Chinese)
    [19]
    ZHANG L, ZHAO M, SHI C, et al. Settlement calculation of composite foundation reinforced with stone columns[J]. International Journal of Geomechanics, 2012, 13(3): 248-256.
    [20]
    《工程地质手册》编委会. 工程地质手册[M]. 第5版. 北京: 中国建筑工业出版社, 2018: 176-177.

    Editorial board of Geological Engineering Handbook. Geological Engineering Handbook[M]. 5th ed. Beijing: China Architecture and Building Press, 2018: 176-177. (in Chinese)
  • Related Articles

    [1]DONG Qing, CHEN Su, LI Xiaojun, DONG Yun, CHEN Yadong, ZHOU Zhenghua, ZHU Jun. Multi-dimensional implementation of logarithmic dynamic skeleton constitutive model and its application in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 192-199. DOI: 10.11779/CJGE20231021
    [2]JI En-yue, CHEN Sheng-shui, ZHU Jun-gao, FU Zhong-zhi. Experimental research on tensile strength of gravelly soil under different gravel contents[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1339-1344. DOI: 10.11779/CJGE201907019
    [3]LI Guang-xin. Reply to discussion on “On soil skeleton and seepage force”[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 387-388. DOI: 10.11779/CJGE201702026
    [4]MAO Chang-xi, DUAN Xiang-bao. Discussion on“ On soil skeleton and seepage force”[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 385-386. DOI: 10.11779/CJGE201702025
    [5]LI Guang-xing. On soil skeleton and seepage force[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1522-1528. DOI: 10.11779/CJGE201608021
    [6]CHEN Guo-xing, SUN Tian, WANG Bing-hui, LI Xiao-jun. Undrained cyclic failure mechanisms and resistance of saturated sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2140-2148. DOI: 10.11779/CJGE201512002
    [7]WANG Bing-hui, CHEN Guo-xing, SUN Tian, LI Xiao-jun. Liquefaction resistance of sand-gravel soils using small soil-box shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2094-2100. DOI: 10.11779/CJGE201511022
    [8]SHAO Long-tan, GUO Xiao-xia, ZHENG Guo-feng. Intergranular stress, soil skeleton stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1478-1483. DOI: 10.11779/CJGE201508017
    [9]SHAO Long-tan. Skeleton stress equation for saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1833-1837.
    [10]CHEN Guoxing, ZHUANG Haiyang. Developed nonlinear dynamic constitutive relations of soils based on Davidenkov skeleton curve[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 860-864.
  • Cited by

    Periodical cited type(7)

    1. 李俊毅. 电渗法加固土体技术的探究与展望. 岩土工程技术. 2024(02): 238-245 .
    2. 王炳辉,栾佶,张雷,金海晖,张文博. 电渗热固结处理顶管废弃泥浆的减量化研究. 地下空间与工程学报. 2024(02): 507-517 .
    3. 王华杰. 电渗试验中土体电阻变化规律探究. 科技创新与应用. 2024(34): 73-76 .
    4. 王炳辉,李贵豪,张雷,金海晖,吴涛,贾仲泽,金丹丹. 不同掺加材料对软土电渗加固效果的影响. 自然灾害学报. 2024(06): 86-97 .
    5. 桂书润,王龙嘉,班子越,赵飞燕,徐欣. 电渗联合堆载预压及化学法加速淤筑土固结的试验研究. 河南科技. 2023(05): 86-90 .
    6. 陈海鹏. 引水隧洞混凝土裂缝化学灌浆加固技术研究. 陕西水利. 2023(10): 154-156 .
    7. 李丽华,杨俊杰,徐维生,宋杨,曹毓. 电渗法联合化学固化法改良淤泥试验. 中国科技论文. 2022(12): 1340-1345 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return