• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Jie, TANG Hong-yu, YANG Yu-nan, SHI Qian, LI Zheng, LI Zhao, GAO Jin, LAN Jun. Experimental research on visible seepage of sandstone fissure using digital image-based method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2024-2033. DOI: 10.11779/CJGE202011007
Citation: LIU Jie, TANG Hong-yu, YANG Yu-nan, SHI Qian, LI Zheng, LI Zhao, GAO Jin, LAN Jun. Experimental research on visible seepage of sandstone fissure using digital image-based method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2024-2033. DOI: 10.11779/CJGE202011007

Experimental research on visible seepage of sandstone fissure using digital image-based method

More Information
  • Received Date: March 08, 2020
  • Available Online: December 05, 2022
  • The visual fracture seepage test devices independently developed apply the color tracer image digital processing technology to carry out the visual seepage tests on the sandstone fractures with vertical spatial angle under the coupling effects of loading and unloading with different osmotic pressure and normal stress gradations. By means of the millisecond frame division technology, the seepage state of the crack is captured and the color domain of the seepage area is partitioned. Based on the digital image technology, the binary processing is carried out. The parameters of the seepage area are identified by double overlay of layers, and the diffusion law of the seepage area under the action of osmotic pressure and normal stress is established. The characteristics of the change of the flow width of each section along the dominant seepage path of the fracture are studied, and the formula for calculating the visual seepage velocity is put forward. It is pointed out that the seepage velocity changes along the flow diameter into three stages: sudden increase, sudden decrease and uniform loss. A functional model for the peak velocity corresponding to the minimum section width is established under the coupling action of osmotic pressure and normal stress. Based on the measured data of the main seepage path, the power function for the stress normal, osmotic pressure and Reynolds number is established, the change point of seepage state in the inertia function area and viscous effect area is calibrated, and the prediction model for Reynolds number of visualized fissure flows is formulated. The new theories and research method for the key scientific issues such as identification of real seepage in fissure seepage path, real-time change of velocity vector and determination of fluid state are put forward.
  • [1]
    LOUIS C. Rock Hydraulics in Rock Mechanics[M]. New York: Springer-Verlag, 1974.
    [2]
    速宝玉, 詹美礼, 赵坚. 仿天然岩体裂隙渗流的试验研究[J]. 岩土工程学报, 1995, 17(5): 19-24. doi: 10.3321/j.issn:1000-4548.1995.05.004

    SU Bao-yu, ZHAN Mei-li, ZHAO Jian. Study on fracture seepage in the imitative nature rock[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 19-24. (in Chinese) doi: 10.3321/j.issn:1000-4548.1995.05.004
    [3]
    许光祥, 张永兴, 哈秋舲. 粗糙裂隙渗流的超立方和次立方定律及其试验研究[J]. 水利学报, 2003, 34(3): 74-79. doi: 10.3321/j.issn:0559-9350.2003.03.014

    XU Guang-xiang, ZHANG Yong-xing, HA Qiu-ling. Super- cubic and sub-cubic law of rough fracture seepage and its experimental study[J]. Journal of Hydraulic Engineering, 2003, 34(3): 74-79. (in Chinese) doi: 10.3321/j.issn:0559-9350.2003.03.014
    [4]
    SINGH K K, SINGH D N, RANJITH P G. Laboratory simulation of flow through single fractured granite[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 987-1000. doi: 10.1007/s00603-014-0630-9
    [5]
    BABADAGLI T, REN X, DEVELI K. Effects of fractal surface roughness and lithology on single and multiphase flow in a single fracture:an experimental investigation[J]. International Journal of Multiphase Flow, 2015, 68: 40-58. doi: 10.1016/j.ijmultiphaseflow.2014.10.004
    [6]
    BRUSH D J, THOMSON N R. Fluid flow in synthetic roughwalled fractures:Navier-Stokes, Stokes, and local cubic law simulations[J]. Water Resources Research, 2003, 39(4): 1085-1100.
    [7]
    OLSSON R, BARTON N. An improved model for hydro mechanical coupling during shearing of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(3): 317-329. doi: 10.1016/S1365-1609(00)00079-4
    [8]
    胡昱, 源新, 刘光廷, 等. 多轴应力作用下砂砾岩单裂隙渗流规律试验研究[J]. 地下空间与工程学报, 2007, 3(6): 1009-1013. doi: 10.3969/j.issn.1673-0836.2007.06.006

    HU Yu, YUAN Xin, LIU Guang-ting, et al. Experiment research on the laws of seepage in calcirudite rock within single fracture under multiaxial stresses[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(6): 1009-1013. (in Chinese) doi: 10.3969/j.issn.1673-0836.2007.06.006
    [9]
    刘才华, 陈从新. 三轴应力作用下岩石单裂隙的渗流特性[J]. 自然科学进展, 2007, 17(7): 989-994. doi: 10.3321/j.issn:1002-008X.2007.07.022

    LIU Cai-hua, CHEN Cong-xin. Seepage characteristics of single fracture under triaxial stress[J]. Advances in Natural Science, 2007, 17(7): 989-994. (in Chinese) doi: 10.3321/j.issn:1002-008X.2007.07.022
    [10]
    王志良, 申林方, 徐则民, 等. 岩体裂隙面粗糙度对其渗流特性的影响研究[J]. 岩土工程学报, 2016, 38(7): 1262-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607013.htm

    WANG Zhi-liang, SHEN Lin-fang, XU Ze-min, et al. Influence of roughness of rock fracture on seepage characteristics[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1262-1268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607013.htm
    [11]
    QIAN J, ZHAN H, LUO S, et al. Experimental evidence of scale-dependent hydraulic conductivity for fully developed turbulent flow in a single fracture[J]. Journal of Hydrology, 2007, 339(3/4): 206-215.
    [12]
    RANJITH P G, DARLINGTON W. Nonlinear single-phase flow in real rock joints[J]. Water Resources Research, 2007, 43(9): 146-156.
    [13]
    ZHANG Z, NEMCIK J. Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures[J]. Journal of Hydrology, 2013, 477(16): 139-151.
    [14]
    胡少华, 周佳庆, 陈益峰, 等. 岩石粗糙裂隙非线性渗流特性试验研究[J]. 地下空间与工程学报, 2017, 13(1): 48-56. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701008.htm

    HU Shao-hua, ZHOU Jia-qing, CHEN Yi-feng, et al. Laboratory research on nonlinear flow behavior of rough fractures[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(1): 48-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701008.htm
    [15]
    鞠杨, 谢和平, 郑泽民, 等. 基于3D打印技术的岩体复杂结构与应力场的可视化方法[J]. 科学通报, 2014, 59(32): 3109-3119. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201432002.htm

    JU Yang, XIE He-ping, ZHENG Ze-ming, et al. Visualization of the complex structure and stress field inside rock by means of 3D printing technology[J]. Chinese Science Bull, 2014, 59(32): 3109-3119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201432002.htm
    [16]
    刘建军, 汪尧, 宋睿, 等. 基于透明岩土材料的可视化渗流实验及其应用前景[J]. 地球科学, 2017, 42(8): 1287-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201708004.htm

    LIU Jian-jun, WANG Yao, SONG Rui, et al. Visual seepage experiment based on transparent rock-soil material and its application prospect[J]. Earth Science, 2017, 42(8): 1287-1295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201708004.htm
    [17]
    盛金昌, 刘继山, 赵坚. 基于图像数字化技术的裂隙岩体非稳态渗流分析[J]. 岩石力学与工程学报, 2006, 25(7): 1402-1407. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200607015.htm

    SHENG Jin-chang, LIU Ji-shan, ZHAO Jian. Analysis of transient fluid flow in fractured rock masses with digital image-based method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1402-1407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200607015.htm
    [18]
    FOXRW , MCDONALD A T, PRITCHARD P J. Introduction to Fluid Mechanics[M]. 6th ed. Hoboken: John Wiley and Sons, 2004: 348.
  • Cited by

    Periodical cited type(11)

    1. 张中昊,李赛,汪可欣. 蠕滑-地震动联合作用下跨断层输水隧洞衬砌结构损伤分析. 振动与冲击. 2025(04): 275-285 .
    2. 梅润雨,何骁,王义深,李建贺,和晋羽,崔臻. 穿越活动断层输水隧洞病害研究进展. 水利水电快报. 2024(01): 44-51 .
    3. 董捷,郑英豪,李兆琦,陈洪运,宫凤梧,闫鑫,刘洋. 考虑断层破碎带影响的隧道结构地震反应研究. 震灾防御技术. 2024(01): 140-150 .
    4. 黄娟,龙浩风,周世杰,施成华. 地震作用下大断面隧道衬砌结构的动力损伤特性. 华南理工大学学报(自然科学版). 2023(04): 124-134 .
    5. 王志岗,陶连金,石城,安韶. 逆断层错动作用下考虑柔性接头的综合管廊结构力学行为研究. 铁道科学与工程学报. 2023(06): 2256-2267 .
    6. 左双英,付丽,陈世万,吴道勇. 基于Interface改进算法的水工隧洞衬砌受力分析. 华中科技大学学报(自然科学版). 2022(01): 99-104 .
    7. 周光新,盛谦,张传健,颜天佑,崔臻,李建贺,王天强. 穿越走滑断层铰接隧洞抗错断设计参数作用机制研究. 岩石力学与工程学报. 2022(05): 941-953 .
    8. 张臣,曹荣荣,贾坤. 断层叠加影响下不同断层倾角采动应力分布特征. 煤炭技术. 2022(09): 71-74 .
    9. 陶连金,王志岗,石城,安韶,贾志波. 基于Pasternak地基模型的断层错动下管线结构纵向响应的解析解. 岩土工程学报. 2022(09): 1577-1586+1 . 本站查看
    10. 周耀强,石文广,唐欣薇,杨轩. 考虑动水压力的输水隧洞-层状地基地震响应分析. 水利水电技术(中英文). 2022(08): 101-111 .
    11. 申玉生,陈孔福,李小彤,曾志华,王耀达,雷龙. 强震区仰坡角度对跨断层隧道结构动力响应影响研究. 地震工程与工程振动. 2022(06): 192-201 .

    Other cited types(12)

Catalog

    Article views (322) PDF downloads (265) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return