• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
HU Zhi-hua, HU Yu-hao, MA Dong-tao, YUAN Lu, LI Mei. Experimental study on acoustic waves of different types of debris flow using generalized S transform[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1962-1968. DOI: 10.11779/CJGE202010023
Citation: HU Zhi-hua, HU Yu-hao, MA Dong-tao, YUAN Lu, LI Mei. Experimental study on acoustic waves of different types of debris flow using generalized S transform[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1962-1968. DOI: 10.11779/CJGE202010023

Experimental study on acoustic waves of different types of debris flow using generalized S transform

More Information
  • Received Date: January 07, 2020
  • Available Online: December 07, 2022
  • The physical model tests in laboratory for debris flow with three types of sub-viscous, intermediate and viscous debris flows are performed. By introducing the window function parameters, a generalized S transform is proposed to analyze the time-frequency characteristics for acoustic signals of different types of debris flows. At the same time, in view of the shortcomings of the traditional Fourier transform, a wavelet packet transform method is used to extract the distribution characteristics of frequency band energy of the acoustic signals. The results show that: (1) Compared with the traditional time-frequency analysis methods, the generalized S transform has excellent time-frequency focus and resolution. (2) With the increase of the bulk density of debris flow, the peak frequency of debris flow moves to low frequency. (3) The signals are decomposed into 8 frequency bands (0 ~ 6.25, 6.25 ~ 12.5, 12.5 ~ 18.75, 18.75 ~ 25, 25 ~ 31.25, 31.25 ~ 37.5, 37.5~43.75, 43.75 ~ 50 Hz) by using the wavelet packet transform, the sub-viscous debris flow is mainly distributed in S6-8, and the intermediate and viscous debris flows are concentrated in S2-4. (4) Comprehensive identification of different types of debris flows can be realized based on the frequency range and frequency band energy of acoustic signals.
  • [1]
    PILGER C, BITTNER M. Infrasound from tropospheric sources: impact on mesopause temperature?[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71(8/9): 816-822.
    [2]
    胡雨豪, 袁路, 马东涛, 等. 泥石流次声警报研究进展[J]. 地球科学进展, 2018, 33(6): 606-613. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201806008.htm

    HU Yu-hao, YUAN Lu, MA Dong-tao, et al. Research progress on debris flow infrasound warning[J]. Advances in Earth Science, 2018, 33(6): 606-613. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201806008.htm
    [3]
    朱星, 许强, 汤明高, 等. 典型岩石破裂产生次声波试验研究[J]. 岩土力学, 2013, 34(5): 1306-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305012.htm

    ZHU Xing, XU Qiang, TANG Ming-gao, et al. Experimental study of infrasound wave generated by typical rock fracture[J]. Rock and Soil Mechanics, 2013, 34(5): 1306-1312. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305012.htm
    [4]
    康玉梅, 朱万成, 白泉, 等. 基于小波变换时频能量分析技术的岩石声发射信号时延估计[J]. 岩石力学与工程学报, 2010, 29(5): 1010-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005021.htm

    KANG Yu-mei, ZHU Wan-cheng, BAI Quan, et al. Time-delay estimation of emission signals of rock using time-frequency energy analysis based on wavelet transform[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 1010-1016. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005021.htm
    [5]
    戴峰, 姜鹏, 徐奴文, 等. 蓄水期坝肩岩质边坡微震活动性及其时频特性研究[J]. 岩土力学, 2016, 37(增刊1): 359-370. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1048.htm

    DAI Feng, JIANG Peng, XU Nu-wen, et al. Study of microseismicity and its time-frequency characteristics of abutment rock slope during impounding period[J]. Rock and Soil Mechanics, 2016, 37(S1): 359-370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1048.htm
    [6]
    张法全, 王海飞, 王国富, 等. 基于RST-NMF模型的微震信号时频分析和识别[J]. 振动与冲击, 2019, 38(17): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201917002.htm

    ZHANG Fa-quan, WANG Hai-fei, WANG Guo-fu, et al. Time-frequency analysis and identification for micro-seismic signals based on RST-NMF model[J]. Journal of Vibration and Shock, 2019, 38(17): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201917002.htm
    [7]
    COVIELLO V, ARATTANO M, COMITI F, et al. Seismic characterization of debris flows: insights into energy radiation and implications for warning[J]. Journal of Geophysical Research: Earth Surface, 2019, 124(6): 1440-1463.
    [8]
    章书成, 余南阳. 泥石流早期警报系统[J]. 山地学报, 2010, 28(3): 379-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201003019.htm

    ZHANG Shu-cheng, YU Nan-yang. Early warning system to debris flow[J]. Mountain Research, 2010, 28(3): 379-384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201003019.htm
    [9]
    STOCKWELL R G. Localization of the complex spectrum: the S transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 998-1001.
    [10]
    郑成龙, 王宝善. S变换在地震资料处理中的应用及展望[J]. 地球物理学进展, 2015, 30(4): 1580-1591. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201504012.htm

    ZHENG Cheng-long, WANG Bao-shan. Applications of strans form in seismic data processing[J]. Progress in Geophysics, 2015, 30(4): 1580-1591. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201504012.htm
    [11]
    PINNEGAR C R, MANSINHA L. Time-local spectral analysis for non-stationary time series: The S-transform for noisy signals[J]. Fluctuation and Noise Letters, 2003, 3(3): L357-L364.
    [12]
    MOUKADEM A, BOUGUILA Z, ABDESLAM D O, et al. A new optimized Stockwell transform applied on synthetic and real non-stationary signals[J]. Digital Signal Processing, 2015, 46: 226-238.
    [13]
    李力, 魏伟, 唐汝琪. 基于改进S变换的煤岩界面超声反射信号处理[J]. 煤炭学报, 2015, 40(11): 2579-2586. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201511013.htm

    LI Li, WEI Wei, TANG Ru-qi. Processing of ultrasonic reflection signal from coal-rock interface using modified S-transform[J]. Journal of China Coal Society, 2015, 40(11): 2579-2586. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201511013.htm
    [14]
    袁路. 泥石流次声影响因素的实验研究[D]. 成都: 中国科学院、水利部成都山地灾害与环境研究所, 2019.

    YUAN Lu. Experimental Study on the Influence Factors of Infrasound From Debris Flow[D]. Chengdu: Institute of Mountain Hazards and Environment, CAS, 2019. (in Chinese)
    [15]
    袁路, 胡雨豪, 马东涛, 等. 泥石流性质和规模对声波特性影响的实验研究[J]. 山地学报, 2018, 36(6): 889-897. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201806008.htm

    YUAN Lu, HU Yu-hao, MA Dong-tao, et al. Influences of debris flow property and scale on acoustic wave characteristics by experiment[J]. Journal of Mountain Research, 2018, 36(6): 889-897. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201806008.htm
    [16]
    丁明涛, 韦方强. 云南蒋家沟泥石流成因及其防治措施探析[J]. 水土保持研究, 2008(1): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200801007.htm

    DING Ming-tao, WEI Fang-qiang. Research on the cause and countermeasures of debris flow hazard of Jiangjia Valley, Yunnan Province[J]. Research of Soil and Water Conservation, 2008(1): 20-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200801007.htm
    [17]
    康志成, 崔鹏, 韦方强, 等. 中国科学院东川泥石流观测研究站观测实验资料集(1995—2000)[M]. 北京: 科学出版社, 2007.

    KANG Zhi-cheng, CUI Peng, WEI Fang-qiang, et al. Data Collection of Dongchuan Debris Flow Observation and Research Station Chinese Academy of Sciences (1995—2000)[M]. Beijing: China Science Publishing, 2007. (in Chinese)

Catalog

    Article views (284) PDF downloads (96) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return