• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Zhao, CHENG Jing-xuan, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui, LI Hui-yong. Variable cross-sectional pore model to describe hydraulic conductivity and water retention behaviors of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1807-1816. DOI: 10.11779/CJGE202010005
Citation: ZHANG Zhao, CHENG Jing-xuan, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui, LI Hui-yong. Variable cross-sectional pore model to describe hydraulic conductivity and water retention behaviors of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1807-1816. DOI: 10.11779/CJGE202010005

Variable cross-sectional pore model to describe hydraulic conductivity and water retention behaviors of geotechnical materials

More Information
  • Received Date: May 29, 2018
  • Revised Date: April 10, 2020
  • Available Online: December 07, 2022
  • To investigate the contribution of their non-uniform cross-section to hydraulic conductivity and water retention behaviours for geotechnical materials, the pores can be simplified as variable cross-sectional assembly of cylindrical macro-pores with pore throats. In addition, this variable cross-sectional pore model can provide theoretical expressions for both the saturated-relative hydraulic conductivity functions and the water retention curves based on a fractal pore size distribution. Finally, these theoretical expressions are validated against both the saturated-unsaturated permeability data for four sandstones and eight soils and the hysteretic water retention data (including the supplementary water retention tests on a clay) for three soils in the previous literatures. The results of RMSD between the predicted and the measured values of saturated permeability and relative hydraulic conductivity show that these new expressions are superior to Kozeny-Carman equation and Assouline model for describing the evolution of saturated permeability with porosity and the relation of relative hydraulic conductivity with effective degree of saturation.
  • [1]
    CHAPUIS R P, AUBERTIN M. On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils[J]. Canadian Geotechnical Journal, 2003, 40(3): 616-628. doi: 10.1139/t03-013
    [2]
    TAIBI S, BICALHO K V, SAYAD-GAIDI C, et al. Measurements of unsaturated hydraulic conductivity functions of two fine-grained materials[J]. Soils and Foundations, 2009, 49(2): 181-191. doi: 10.3208/sandf.49.181
    [3]
    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. doi: 10.1029/WR012i003p00513
    [4]
    ASSOULINE S. A model for soil relative hydraulic conductivity based on the water retention characteristic curve[J]. Water Resources Research, 2001, 37(2): 265-271. doi: 10.1029/2000WR900254
    [5]
    ASSOULINE S, TESSIER D, BRUAND A. A conceptual model of the soil water retention curve[J]. Water Resources Research, 1998, 34(2): 223-231. doi: 10.1029/97WR03039
    [6]
    HU R, CHEN Y F, LIU H H, et al. A relative permeability model for deformable soils and its impact on coupled unsaturated flow and elasto-plastic deformation processes[J]. Science China-Technological sciences, 2015, 58(11): 1971-1982. doi: 10.1007/s11431-015-5948-3
    [7]
    YU B M, LI J H, LI Z H, et al. Permeabilities of unsaturated fractal porous media[J]. International Journal of Multiphase Flow, 2003, 29(10): 1625-1642. doi: 10.1016/S0301-9322(03)00140-X
    [8]
    徐永福, 黄寅春. 分形理论在研究非饱和土力学性质中的应用[J]. 岩土工程学报, 2006, 28(5): 635-638. doi: 10.3321/j.issn:1000-4548.2006.05.017

    XU Yong-fu, HUANG Yin-chun. Fractal-textured soils and their unsaturated mechanical properties[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 635-638. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.05.017
    [9]
    DOUSSAN C, RUY S. Prediction of unsaturated soil hydraulic conductivity with electrical conductivity[J]. Water Resources Research, 2009, 45(10): W10408.
    [10]
    TOKUNAGA T K. Hydraulic properties of adsorbed water films in unsaturated porous media[J]. Water Resources Research, 2009, 45(6): W06415.
    [11]
    JERAULD G R, SALTER S J. The effect of pore-structure on hysteresis in relative permeability and capillary pressure: pore-level modeling[J]. Transport in Porous Media, 1990, 5(2): 103-151. doi: 10.1007/BF00144600
    [12]
    NG C W W, PANG Y W. Experimental investigations of the soil-water characteristics of a volcanic soil[J]. Canadian Geotechnical Journal, 2000, 37(6): 1252-1264. doi: 10.1139/t00-056
    [13]
    FENG M, FREDLUND D G. Hysteretic influence associated with thermal conductivity sensor measurements[C]//Proceedings of the 52nd Canadian Geotechnical Conference, 1999, Regina: 651-657.
    [14]
    MUALEM Y, BERIOZKIN A. General scaling rules of the hysteretic water retention function based on Mualem's domain theory[J]. European Journal of Soil Science, 2009, 60(4): 652-661. doi: 10.1111/j.1365-2389.2009.01130.x
    [15]
    LIU Y, PARIANGE J Y, STEENHUIS T S. A soil water hysteresis model for fingered flow data[J]. Water Resources Research, 1995, 31(9): 2263-2266. doi: 10.1029/95WR01649
    [16]
    WEI C F, DEWOOIKAR M M. Formulation of capillary hysteresis with internal state variables[J]. Water Resources Research, 2006, 42(7): W07405.
    [17]
    ZHOU A N. A contact angle-dependent hysteresis model for soil-water retention behavior[J]. Computers and Geotechnics, 2013, 49(4): 36-42.
    [18]
    BOUSFIELD D W, KARLES G. Penetration into three- dimensional complex porous structures[J]. Journal of Colloid and Interface Science, 2004, 270(2): 396-405. doi: 10.1016/j.jcis.2003.10.017
    [19]
    YU B M, LI J H. Some fractal characters of porous media[J]. Fractals, 2001, 9(3): 365-372. doi: 10.1142/S0218348X01000804
    [20]
    CARSEL R F, PARRISH R S. Developing joint probability distributions of soil water retention characteristics[J]. Water Resources Research, 1988, 24(5): 755-769. doi: 10.1029/WR024i005p00755
    [21]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [22]
    CHILINDAR G V. Relationship between porosity, permeability and grain size distribution of sands and sandstones[C]//Proceedings of Deltaic and Shallow Marine Deposits, 1964, New York: 71-75.
    [23]
    LUFFEL D L, HOWARD W E, HUNT E R. Travis Peak core permeability and porosity relationships at reservoir stress[J]. SPE Formation Evalaution, 1991, 16(3): 310-318.
    [24]
    HIRST J P P, DAVIS N, PALMER A F, et al. The tight gas challenge: appraisal results from the Devonian of Algeria[J]. Petroleum Geoscience, 2001, 7(1): 13-21. doi: 10.1144/petgeo.7.1.13
    [25]
    MUALEM Y. A Catalogue of the Hydraulic Properties of Unsaturated Soil[R]. Haifa: Technion-Israel Institute of Technology, 1974.
    [26]
    LERMAN P M. Fitting segmented regression models by grid search[J]. Journal of the Royal Statistical Society Series C: Applied Statistics, 1980, 29(1): 77-84.
    [27]
    PHAM H Q, FREDLUND D G, BARBOUR S L. A practical model for the soil-water characteristic curve for soils with negligible volume change[J]. Géotechnique, 2003, 53(2): 293-298. doi: 10.1680/geot.2003.53.2.293
    [28]
    LINDQUIST W B, VENKATARANGAN A, DUNSMUIR J, et al. Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones[J]. Journal of Geophysical Research, 2000, 105(B9): 21509-21527. doi: 10.1029/2000JB900208
    [29]
    DONG H, BLUNT M J. Pore-network extraction from micro- computerized-tomography images[J]. Physical Review E, 2009, 80(3): 1-11.
    [30]
    KROHN C E, THOMPSON A H. Fractal sandstone pores: automated measurements using scanning-electron-microscope images[J]. Physical Review B, 1986, 33(9): 6366-6374. doi: 10.1103/PhysRevB.33.6366
    [31]
    SMIDT J M, MONRO D M. Fractal modeling applied to reservoir characterization and flow simulation[J]. Fractals, 1998, 6(4): 401-408. doi: 10.1142/S0218348X98000444
  • Related Articles

    [1]HAN Xingbo, CHEN Ziming, YE Fei, LIANG Xiaoming, FENG Haolan, XIA Tianhan. Model tests on disturbance characteristics of surrounding rock of loess shield tunnels during excavation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 968-977. DOI: 10.11779/CJGE20230054
    [2]WANG Jianming, CUI Xinnan, CHEN Zhonghui, CHEN Chong. Mechanism and stability of unloading fracture in rock slopes containing trailing edge cracks in open pit mines[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 345-353. DOI: 10.11779/CJGE20211541
    [3]SHE Fang-tao, WU Zheng-qi, ZHOU Wei-zong, LIU Guo-ping, LI Lei. Deformation control of surrounding rock of rectangular pipe-jacking tunnels considering key construction parameters[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 247-253. DOI: 10.11779/CJGE2022S1044
    [4]ZHU Zhao-hui, REN Da-chun, LI Xiu-wen, SUN Jian-hui, WANG Wan-shun. Application of fiber Bragg grating displacement meter groups in continuous monitoring of deformation of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2093-2100. DOI: 10.11779/CJGE201611020
    [5]ZHENG Jun-jie, ZHANG Rong-jun, PAN Yu-tao, CUI Lan. Analytic method for passive piles considering excavation-induced unloading effects and deformation coupling effect[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 606-614.
    [6]WU Yong-ping, WU Xue-ming. Large-scale 3D simulati on of rock-mass deformation under static-dynamical coupling loading[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1504-1510.
    [7]WU Zhangzhong, XU Guangli, WU Li, YE Qian. Mechanical deformation characteristics of rock mass surrounding lateral enlarging excavation of tunnels with ultra-large sections[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 172-177.
    [8]CHEN Yijun, LIU Changwu, XU Jin, FANG Yanqiang. Application of new spigot coaxial rod extensometer in monitoring deformation of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 1084-1089.
    [9]Jiang Hongdao, Li Zhaoyin, Chen Guorong. Application of 3-D BEM for Deformation and Stability Analysis on the Surrounding Rock of Underground Tunnels Group[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(5): 12-18.
    [10]Chen Xiangzhen, Wang Zhiming. Deformation Analysis of Surrounding Rock on Diversion Tunnel in Lubuge Hydraulic Power Station[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(5): 59-65.
  • Cited by

    Periodical cited type(3)

    1. 肖源杰,王政,AMINU Umar Faruk,王萌,李昀博,孔坤锋,陈宇亮,周震,李志勇. 不同建筑固废再生骨料取代率下粗粒土填料永久变形特性及安定行为研究. 中南大学学报(自然科学版). 2024(03): 1008-1022 .
    2. 宾伟,黄靓,曾令宏,刘文琦,屈辉,彭龙辉,李东. 水泥固化再生骨料改性盐渍土的路用性能研究. 公路. 2024(08): 94-100 .
    3. 肖源杰,王政,AMINU Umar Faruk,王萌,李昀博,孔坤锋,陈宇亮,周震,李志勇. 不同建筑固废再生骨料取代率下粗粒土填料永久变形试验及预估模型. 中国公路学报. 2023(10): 17-29 .

    Other cited types(12)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return