Citation: | HU Xun-jian, BIAN Kang, XIE Zheng-yong, LIU Jian, CHEN Ming, LI Bing-yang. Influence of meso-structure heterogeneity on granite strength and deformation with particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1540-1548. DOI: 10.11779/CJGE202008020 |
[1] |
WANG J. High-level radioactive waste disposal in China: update 2010[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(1): 5-15.
|
[2] |
尤明庆. 围压对岩石试样强度的影响及离散性[J]. 岩石力学与工程学报, 2014, 33(5): 929-937. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201405008.htm
YOU Ming-qing. Effect of confining pressure on strength scattering of rock specimen[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 929-937. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201405008.htm
|
[3] |
TANG C A, LIU H, LEE P, et al. Numerical studies of the influence of microstructure on rock failure in uniaxial compression-Part I: Effect of heterogeneity[J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37(4): 555-569.
|
[4] |
LAN H, MARTIN C D, HU B. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading[J]. Journal of Geophysical Research Solid Earth, 2010, 115, B01202.
|
[5] |
POTYONDY D O. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364. doi: 10.1016/j.ijrmms.2004.09.011
|
[6] |
POTYONDY D O. A grain-based model for rock: approaching the true microstructure[C]//Proceedings of the Rock Mechanics in the Nordic Countries, 2010, Kongsberg: 225-234.
|
[7] |
胡训健, 卞康, 刘建, 等. 细观结构的非均质性对花岗岩蠕变特性影响的离散元模拟研究[J]. 岩石力学与工程学报, 2019, 38(10): 2069-2083. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910013.htm
HU Xun-jian, BIAN Kang, LIU Jian, et al. Discrete element simulation study on the influence of microstructure heterogeneity on the creep characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2069-2083. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910013.htm
|
[8] |
PENG J, WONG L N Y, TEH C I. Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(2): 1054-1073. doi: 10.1002/2016JB013469
|
[9] |
LIU G, CAI M, HUANG M. Mechanical properties of brittle rock governed by micro-geometric heterogeneity[J]. Computers and Geotechnics, 104: 358-372. doi: 10.1016/j.compgeo.2017.11.013
|
[10] |
水利水电工程岩石试验规程:SL264—2001[S]. 2001.
Rock Test Regulations for Water Conservancy and Hydropower Engineering: SL264—2001[S]. 2001. (in Chinese)
|
[11] |
HOEK E, BROWN E T. Empirical strength criterion for rock masses[J]. ASCE Journal of Geotechnical Engineering Division, 1980, 106(GT9): 1013-1035.
|
[12] |
MARTIN C D, CHANDLER N A. The progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 1994, 31(6): 643-659.
|
[13] |
ZHANG Q, ZHU H H, ZHANG L Y, et al. Effect of micro-parameters on the Hoek-Brown strength parameter mi for intact rock using particle flow modeling[C]//The 46th US Rock Mechanics Geomechanics Symposium, 2012, Chicago: 2187-2193.
|
[14] |
周辉, 孟凡震, 刘海涛, 等. 花岗岩脆性破坏特征与机制试验研究[J]. 岩石力学与工程学报, 2014, 33(9): 1822-1827. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409013.htm
ZHOU Hui, MENG Fan-zhen, LIU Hai-tao, et al. Experimental study on characteristics and mechanism of brittle failure of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1822-1827. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409013.htm
|
[15] |
MARTIN C D. The Strength of Massive Lac du Bonnet Granite Around Underground Opening[D]. Winnipeg: University of Manitoba, 1993.
|
[16] |
ZHOU J, LAN H X, ZHANG L Q, et al. Novel grain-based model for simulation of brittle failure of Alxa porphyritic granite[J]. Engineering Geology, 2019, 251: 100-114. doi: 10.1016/j.enggeo.2019.02.005
|
[17] |
Itasca Consulting Group Inc. PFC, Version 5.0[M]. Minneapolis: Itasca Consulting Group Inc., 2014: 1-2.
|
[18] |
JI P Q, ZHANG X P, ZHANG Q. A new method to model the non-linear crack closure behavior of rocks under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 171-183. doi: 10.1016/j.ijrmms.2018.10.015
|
[19] |
陈国庆, 赵聪, 魏涛, 等. 基于全应力–应变曲线及起裂应力的岩石脆性特征评价方法[J]. 岩石力学与工程学报, 2018, 37(1): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801005.htm
CHEN Guo-qing, ZHAO Cong, WEI Tao, et al. Evaluation method of rock brittle characteristics based on full stress-strain curve and crack initiation stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 51-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801005.htm
|
[20] |
李斌. 高围压条件下岩石破坏特征及强度准则研究[D]. 武汉: 武汉科技大学, 2015.
LI Bin. Study on Rock Failure Characteristics and Rock Strength Criteria under High Confining Pressure[D]. Wuhan: Wuhan University of Science and Technology, 2015. (in Chinese)
|
[21] |
LUAN X, DI B, WEI J, et al. Laboratory measurements of brittleness anisotropy in synthetic shale with different cementation[C]//Proceedings of the 2014 SEG Annual Meeting. Denver, Society of Exploration Geophysicists, 2014: 3005-3009.
|
[22] |
HUCKA V, DAS B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1974, 11(10): 389-392. doi: 10.1016/0148-9062(74)91109-7
|
[23] |
韩振华, 张路青, 周剑, 等. 矿物粒径对花岗岩单轴压缩特性影响的试验与模拟研究[J]. 工程地质学报, 2019, 27(3): 497-504. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201903005.htm
HAN Zhen-hua, ZHANG Lu-qing, ZHOU Jian, et al. Uniaxial compression test and numerical studies of grain size effect on mechanical properties of granite[J]. Journal of Engineering Geology, 2019, 27(3): 497-504. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201903005.htm
|
[1] | ZHANG Hanchao, HU Shengxia, LI Hailong, LIN Sen, LI Wenna. Characteristics of triaxial deformation of Nanchang laterite[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 119-122. DOI: 10.11779/CJGE2023S10012 |
[2] | DENG Mao-lin, ZHOU Jian, YI Qing-lin, ZHANG Fu-ling, HAN Bei, LI ZHUO Jun. Characteristics and mechanism of deformation of chair-shaped soil landslides in Three Gorges Reservoir area[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1296-1303. DOI: 10.11779/CJGE202007013 |
[3] | YU Wei-jian, WANG Wei-jun, WEN Guo-hua, ZHANG Nong, WU Hai, ZHANG Yong-qing. Deformation mechanism and control technology of coal roadway under deep well and compound roof[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1501-1508. |
[4] | WU Hong-gang, MA Hui-min, BAO Gui-yu. Deformation mechanism of tunnel-slope system in shallow tunnels under unsymmetrical pressure[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 509-514. |
[5] | YAN Zhi-xin, ZHANG Liu-ping, CAO Xiao-hong, ZHANG Xue-dong, CAI Han-cheng. D ynamic response and deformation mechanism of a bedding rock slope under earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 54-58. |
[6] | Deformation mechanism of secondary consolidation of natural clays[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7). |
[7] | LI Jianlin, LIU Jie, WANG Lehua. Studies on deformation mechanism and rock mass stability of high slopes of Geheyan Power Station under multiple factors[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1289-1295. |
[8] | YIN Ji, WEI Jianhua, LI Xiangfan. Increment method to calculate dispalcement of composite soil nailled wall[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 755-759. |
[9] | Miao Tiande, Liu Zhongyu, Ren Jiusheng. Deformation mechanism and constitutive relation of collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 383-387. |
[10] | Wang Hongjin, Zhang Guoping, Zhou Keji. Effects Of Inherent and Induced Anisotropy on Strength and Deformation Characteristics of Compacted Cohesive Soil[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 1-10. |