• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DONG Qing, SU Jie, ZHOU Zheng-hua, LI Xiao-jun. Time-domain constitutive model based on logarithmic skeleton curve and its application[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1491-1498. DOI: 10.11779/CJGE202008014
Citation: DONG Qing, SU Jie, ZHOU Zheng-hua, LI Xiao-jun. Time-domain constitutive model based on logarithmic skeleton curve and its application[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1491-1498. DOI: 10.11779/CJGE202008014

Time-domain constitutive model based on logarithmic skeleton curve and its application

More Information
  • Received Date: September 25, 2019
  • Available Online: December 05, 2022
  • The equivalent linearization method for seismic nonlinear response of soils will overestimate its high-and low-frequency nonlinear effects, and the plastic deformation of soils can not be reflected, especially for soft soil layer sites and thin overburden sites. The functional expression for logarithmic skeleton curves is proposed based on the test curves to analyze the time-domain nonlinear seismic responses, and the characteristic of the new skeleton curve is that the asymptote rises slowly. Based on the Mashing criterion, a logarithmic dynamic skeleton constitutive model is established with loading-unloading turning points as reference points. On this basis, a 1D time-domain seismic response method for soil by using the overlapping difference scheme is proposed. The corresponding program Soilresp1D is developed taking Microsoft Visual C++ 6.0 as the platform, and it is used to analyze the nonlinear seismic response of soft-soil layer sites and thin overburden sites and Eureka Canyon Road site. By comparing with the results of time-domain analysis based on the hyperbolic dynamic skeleton constitutive model, the equivalent linearization analysis and the actual seismic response observation, the feasibility and rationality of the proposed logarithmic dynamic skeleton curve are verified. The results show that the nonlinear seismic response method based on the logarithmic dynamic skeleton constitutive model can be applied to the seismic response analysis of different soil-layer sites. It is especially shown that the area of the hysteresis loop of the logarithmic dynamic skeleton curve and the damping degradation coefficient are larger, thus the damping effect and the plastic property of soils are better reflected.
  • [1]
    荣棉水, 卢滔, 李小军. 一种基于动态骨架曲线的土层时域积分方法及其验证[J]. 应用基础与工程科学学报, 2013, 21(1): 79-89. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201301010.htm

    RONG Mian-shui, LU Tao, LI Xiao-jun. A direct time-domain integral method based on dynamic skeleton curve constitutive model and its verification[J]. Journal of Basic Science And Engineering, 2013, 21(1): 79-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX201301010.htm
    [2]
    GUANG Y, ANDERSON J G, SIDDHATHEN R. On the characteristics of nonlinear soil response[J]. Bulletin of the Seismological Society of America, 1993, 83(1): 218-244.
    [3]
    HUANG H C, SHIEH C S, CHIU H C. Linear and nonlinear behavior of soft soil layers using Lotung downhole array in Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2001, 12(3): 503-524. doi: 10.3319/TAO.2001.12.3.503(T)
    [4]
    李小军. 非线性土层地震反应分析的一种方法[J]. 华南地震, 1992, 12(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDI199204000.htm

    LI Xiao-jun. A method to analyzing seismic response of nonlinear soil layers[J]. South China Journal of Seismology, 1992, 12(4): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDI199204000.htm
    [5]
    MASING G. Eigenspannungen und verfestigungbeim messing[C]//Proceedings of Second International Congress of Applied Mechanics, 1926, Zurich: 332-335.
    [6]
    NEWMARK N M, ROSENBLUETH E. Fundarnentais of Earthquake Engineering[M]. EngiewoodCliffs: Prentice-Hall, 1971.
    [7]
    PYKE R M. Nonlinear soil models for irregular cyclic loadings[J]. Journal of Geotechnical Engineering, ASCE, 1979, 105(6): 715-726.
    [8]
    王志良, 韩清宇. 黏弹塑性土层地震反应的波动分析法[J]. 地震工程与工程学报, 1981, 1(1): 117-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198101010.htm

    WANG Zhi-liang, HAN Qing-yu. Analysis of wave propagation for the site seismic response, using the visco-elastoplastic model[J]. Earthquake Engineering and Engineering Vibration, 1981, 1(1): 117-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198101010.htm
    [9]
    MARTIN P P, SEED H B. One-dimensional dynamic ground response analyses[J]. Journal of Geotechnical Engineering, ASCE,1982, 108(7): 935-952.
    [10]
    赵丁凤, 阮滨, 陈国兴. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证[J]. 岩土工程学报, 2017, 39(5): 888-895. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705018.htm

    ZAO Ding-feng, RUAN Bing, CHEN Guo-xing. Validation of the modified irregular loading-reloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888-895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705018.htm
    [11]
    李小军. 土的动力本构关系的一种简单函数表达式[J]. 岩土工程学报, 1992, 14(5): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199205012.htm

    LI Xiao-jun. A simple functional formula of dynamic constitutive models of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(5): 90-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC199205012.htm
    [12]
    李小军, 廖振鹏, 张克绪. 考虑阻尼拟合的动态骨架曲线函数式[J]. 地震工程与工程振动, 1994, 14(1): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199401004.htm

    LI Xiao-jun, LIAO Zhen-peng, ZHANG Ke-xu. A functional formula of dynamic skeleton curve taking account of damping effect[J]. Earthquake Engineering and Engineering Vibration, 1994, 14(1): 30-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199401004.htm
    [13]
    卢滔, 周正华, 霍敬妍. 土层非线性地震反应一维时域分析[J]. 岩土力学, 2008, 29(8): 2170-2176. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808033.htm

    LU Tao, ZHOU Zheng-hua, HUO Jing-yan. 1D nonlinear seismic response analysis of soil layers in time domain[J]. Rock and Soil Mechanics, 2008, 29(8): 2170-2176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808033.htm
    [14]
    廖振鹏. 工程波动理论导论[M]. 2版.北京: 科学出版社, 2002: 62-63.

    LIAO Zhen-peng. Introduction to Wave Motion Theories in Engineering[M]. 2nd ed. Beijing: Science Press, 2002: 62-63. (in Chinese)
  • Cited by

    Periodical cited type(6)

    1. 李斌,安关峰,王树太,温亦品,李波,柳献. 软硬交互地层盾构掘进线路特征对地表扰动的影响规律研究. 现代城市轨道交通. 2025(02): 63-71 .
    2. 张超,张生海,殷珂,张济,曾世超. 基于真实地形的山谷场地三维地震响应特征研究. 地震工程学报. 2025(03): 578-589 .
    3. 何卫平,李小军,杜修力,姚惠芹. P波入射分界面叠加区质点运动形成机制与峰值规律. 振动与冲击. 2023(18): 81-87+163 .
    4. 徐安全,梁建文,巴振宁. 上软下硬场地中大直径盾构隧道地震响应分析. 地震工程与工程振动. 2023(05): 12-21 .
    5. 师黎静,宋健,党鹏飞,刘佳轩. 区域场地近地表速度结构建模研究. 岩土工程学报. 2022(02): 360-367 . 本站查看
    6. 崔光耀,宋博涵,王道远,肖剑. 隧道软硬围岩交界段纤维混凝土衬砌抗震性能模型试验研究. 岩石力学与工程学报. 2021(S1): 2653-2661 .

    Other cited types(6)

Catalog

    Article views (261) PDF downloads (113) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return