ZHONG Zi-lan, ZHEN Li-bin, SHEN Yi-yao, ZHAO Mi, DU Xiu-li. Seismic performance evaluation of underground structures using endurance time analysis[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1482-1490. DOI: 10.11779/CJGE202008013
    Citation: ZHONG Zi-lan, ZHEN Li-bin, SHEN Yi-yao, ZHAO Mi, DU Xiu-li. Seismic performance evaluation of underground structures using endurance time analysis[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1482-1490. DOI: 10.11779/CJGE202008013

    Seismic performance evaluation of underground structures using endurance time analysis

    More Information
    • Received Date: October 31, 2019
    • Available Online: December 05, 2022
    • The endurance time analysis (ETA) is an efficient seismic performance evaluation method characterized by developing series of seismic response compatible acceleration time histories whose amplitudes increase with the duration. The artificial endurance acceleration time histories are used as the input for engineering structures to perform nonlinear dynamic analyses. ETA can effectively capture the entire dynamic response of the structure from elastic to plastic till finally collapse, and can be used as an alternative approach to evaluate the seismic performance of structures. In order to study the applicability of this method in the seismic performance evaluation of underground structures, the Dakai subway station is taken as the prototype, and a two-dimensional finite element model considering soil-structure interaction is established. Three endurance time acceleration functions (ETAFs) are generated based on the design response spectra of Chinese seismic design code. The seismic response characteristics of the Dakai subway station subjected to three ETAFs and 15 real ground motions are compared in this study. The numerical results show that the responses of ETA generally fall between the envelopes of incremental dynamic analyses (IDA) using the real ground motions. The average response of the subway station using ETA is also in good agreement with the average results using IDA. Therefore, ETA provides a new computationally efficient alternative for seismic performance evaluation of the underground structures other than the traditional nonlinear IDA. Besides, the response spectrum corresponding to the fundamental period of the soil-structure interaction system is more preferable than the peak ground acceleration as the seismic intensity measure for the performance evaluation of the underground structures.
    • [1]
      中国地震动参数区划图:GB18306—2015[S]. 2016.

      Seismic Ground Motion Parameters Zonation Map of China: GB18306—2015[S]. 2016. (in Chinese)
      [2]
      韩建平, 吕西林, 李慧. 基于性能的地震工程研究的新进展及对结构非线性分析的要求[J]. 地震工程与工程振动, 2007, 27(4): 15-23. doi: 10.3969/j.issn.1000-1301.2007.04.003

      HAN Jian-ping, LÜ Xi-lin, LI Hui. State-of-the-art of performance-based earthquake engineering and need for structural nonlinear analysis[J]. Earthquake Engineering and Engineering Vibration, 2007, 27(4): 15-23. (in Chinese) doi: 10.3969/j.issn.1000-1301.2007.04.003
      [3]
      刘晶波, 刘祥庆, 李彬. 地下结构抗震分析与设计的Pushover分析方法[J]. 土木工程学报, 2008, 41(4): 73-80. doi: 10.3321/j.issn:1000-131X.2008.04.011

      LIU Jing-bo, LIU Xiang-qing, LI Bin. A pushover analysis method for seismic analysis and design of underground structures[J]. China Civil Engineering Journal, 2008, 41(4): 73-80. (in Chinese) doi: 10.3321/j.issn:1000-131X.2008.04.011
      [4]
      刘晶波, 刘祥庆, 薛颖亮. 地下结构抗震分析与设计的Pushover方法适用性研究[J]. 工程力学, 2009, 26(1): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200901018.htm

      LIU Jing-bo, LIU Xiang-qing, XUE Ying-liang. Study on applicability of a pushover analysis method for seismic analysis and design of underground structures[J]. Engineering Mechanics, 2009, 26(1): 49-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200901018.htm
      [5]
      刘晶波, 王文晖, 赵冬冬, 等. 循环往复加载的地下结构Pushover分析方法及其在地震损伤分析中的应用[J]. 地震工程学报, 2013, 35(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301004.htm

      LIU Jing-bo, WANG Wen-hui, ZHAO Dong-dong, et al. Pushover analysis methed of underground structures under reversal load and its application in seismic damage analysis[J]. China Earthquake Engineering Journal, 2013, 35(1): 21-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301004.htm
      [6]
      VAMVATSIKOS D, CORNELL C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491-514. doi: 10.1002/eqe.141
      [7]
      赵冬冬. 城市地铁地下结构地震反应的试验研究与数值模拟[D]. 北京: 清华大学, 2013.

      ZHAO Dong-dong. Experimental Study and Numerical Simulation on Seismic Response of Urban Underground Subway Structures[D]. Beijing: Tsinghua University, 2013. (in Chinese)
      [8]
      杨智勇, 黄宏伟, 张冬梅, 等. 盾构隧道抗震分析的静力推覆方法[J]. 岩土力学, 2012, 33(5): 1381-1388. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201205015.htm

      YANG Zhi-yong, HUANG Hong-wei, ZHANG Dong-mei, et al. Pushover method for seismic analysis of shield tunnel[J]. Rock and Soil Mechanics, 2012, 33(5): 1381-1388. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201205015.htm
      [9]
      CHEN Z, CHEN W, ZHANG W. Seismic performance evaluation of multi-story subway structure based on pushover analysis[C]//Advances in Soil Dynamics and Foundation Engineering, ASCE, 2014: 444-454.
      [10]
      许成顺, 许紫刚, 杜修力, 等. 地下结构抗震简化分析方法比较研究[J]. 地震工程与工程振动, 2017, 37(2): 65-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201702008.htm

      XU Cheng-shun, XU Zi-gang, DU Xiu-li, et al. Comparative study of simplified methods for seismic analysis of underground structure[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(2): 65-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201702008.htm
      [11]
      崔臻, 盛谦, 冷先伦, 等. 基于增量动力分析的大型地下洞室群性能化地震动力稳定性评估[J]. 岩石力学与工程学报, 2012, 31(4): 703-712. doi: 10.3969/j.issn.1000-6915.2012.04.009

      CUI Zhen, SHENG Qian, LENG Xian-lun, et al. Performance-based seismic stability assessment of large underground cavern group with incremental dynamic analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 703-712. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.04.009
      [12]
      OSMI S K C, AHMAD S M. Seismic fragility curves for shallow circular tunnels under different soil conditions[J]. World Academy of Science, Engineering and Technology, 2016; 10(10): 1281-1287.
      [13]
      LIU T, CHEN Z, YUAN Y, SHAO X. Fragility analysis of a subway station structure by incremental dynamic analysis[J]. Advances in Structural Engineering, 2016; 20(7): 1111-1124.
      [14]
      ESTEKANCHI H E, VAFAI A, SADEGHAZAR M. Endurance timemethod for seismic analysis and design of structures[J]. Scientia Iranica, 2004, 11(4): 361-370.
      [15]
      HARIRI-ARDEBILI M A, SATTAR S, ESTEKANCHI H E. Performance-based seismic assessment of steel frames using endurance time analysis[J]. Engineering Structures, 2014, 69: 216-234.
      [16]
      ESTEKANCHI H E, VALAMANESH V, VAFAI A. Application ofendurance time method in linear seismic analysis[J]. Engineering Structure, 2007, 29(10): 2551-2562.
      [17]
      建筑抗震设计规范:GB50011—2010[S]. 2010.

      Code for Seismic Design of Buildings: GB50011—2010[S]. 2010. (in Chinese)
      [18]
      杜修力, 李洋, 许成顺, 等. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展[J]. 岩土工程学报, 2018, 40(2): 223-236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm

      DU Xiu-li, LI Yang, XU Cheng-shun, et al. Review on damage cause and disaster mechanism of Dakai subway station during 1995 Osaka-Kobe earthquake[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 223-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802003.htm
      [19]
      XU Z, DU X, XU C, et al. Numerical research on seismic response characteristics of shallow buried rectangular underground structure[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 242-252.
      [20]
      黄雨, 金晨, 庄之敬. 基于地震变形控制的隧道地基注浆抗液化加固效果评价[J]. 岩石力学与工程学报, 2009, 28(7): 1484-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200907025.htm

      HUANG Yu, JIN Chen, ZHUANG Zhi-jing. Assessment of anti-liquefaction grouting reinforcement effect of tunnel foundation based on earthquake-induced deformations control[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1484-1490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200907025.htm
      [21]
      MA C, LU D, DU X. Seismic performance upgrading for underground structures by introducing sliding isolation bearings[J]. Tunnelling & Underground Space Technology, 2018, 74: 1-9.
      [22]
      YANG Z, ELGAMAL A, PARRA E. Computational model for cyclic mobility and associated shear deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1119-1127.
      [23]
      PARRA-COLMENARES E J. Numerical Modeling of Liquefaction and Lateral Ground Deformation Including Cyclic Mobility and Dilation Response in Soil Systems[D]. Corvallis: Oregon State University, 1996.
      [24]
      李洋. 浅埋地下框架结构地震破坏机理研究[D]. 北京: 北京工业大学, 2018.

      LI Yang. Earthquake Damage Mechanism of Shallow Buried Underground Frame Structures[D]. Beijing: Beijing University of Technology, 2018. (in Chinese)
      [25]
      FEMA. Seismic Performance Assessment of Buildings Volume 1—Methodology[R]. Washington D C: Federal Emergency Management Agency, 2012.
      [26]
      FEMA. Seismic Performance Assessment of Buildings Volume 2—Implementation guide[R]. Washington D C: Federal Emergency Management Agency, 2012.
      [27]
      庄海洋, 程绍革, 陈国兴. 阪神地震中大开地铁车站震害机制数值仿真分析[J]. 岩土力学, 2008, 29(1): 245-250. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801048.htm

      ZHUANG Hai-yang, CHENG Shao-ge, CHEN Guo-xing. Numerical simulation and analysis of earthquake damage of Dakai metro station caused by Kobe earthquake[J]. Rock and Soil Mechanics, 2008, 29(1): 245-250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801048.htm
      [28]
      IWATATE T, KOBAYASHI Y, KUSU H, et al. Investigation and shaking table tests of subway structures of the Hyogoken-Nanbu earthquake[C]//Proceedings of the 12WCEE, 2000, New Zealand: 1-6.
      [29]
      RIAHI H T, ESTEKANCHI H E. Seismic assessment of steel frames with the endurance time method[J]. Journal of Constructional Steel Research, 2010, 66(6): 780-792.
    • Related Articles

      [1]WANG Haiyang, CHEN Pingshan, HE Liping. Model tests on consolidation of soft foundation by deep cement mixing method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 170-174. DOI: 10.11779/CJGE2024S10023
      [2]LI Guowei, ZHAO Xingyu, ZHANG Liming, ZHOU Yang, XIONG Li, HE Xinrong. Model tests on deep soft ground improvement of existing sand-filled subgrade with squeezed branch piles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1768-1775. DOI: 10.11779/CJGE20230277
      [3]JIANG Zong-bin, JIANG An-nan, SHI Jing. Subgrade settlement using CFG piles based on cvisc creep model[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 346-351.
      [4]ZHANG Tao, CAI Guo-jun, LIU Song-yu. Settlement prediction of soft ground based on Weibull model[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 212-216.
      [5]WANG Liang-liang, YANG Guo-lin. Model tests on static and dynamic performances of cut subgrade of railways in medium-strong expensive soil area[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 137-143.
      [6]BIAN Xue-cheng, JIANG Hong-guang, JIN Wan-feng, JIANG Jian-qun, CHEN Ren-peng, CHEN Yun-min. Full-scale model tests on slab track-subgrade interaction and load transfer in track system[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1488-1495.
      [7]XUE Xiang, SONG Lian-liang, JIA Liang, LE Yuan, GE Hong. New prediction method for post-construction settlement of soft-soil roadbed of expressway[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 125-130.
      [8]XIE Hongshuai, ZAI Jinzhang, LIU Qinghua. Mechanism of improving soft clay ground by the combined-method of vacuum dewatering and preloading[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 119-121.
      [9]ZHAO Jiuzhai. Research on settlement of soft clay ground in Lianyungang[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 643-649.
      [10]Shen Zhujiang, Yi Jindong. Comparison of Models in Deformation Analysis of Beach Soft Ground under Embankment[J]. Chinese Journal of Geotechnical Engineering, 1987, 6(6): 39-45.

    Catalog

      Article views (528) PDF downloads (218) Cited by()
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return