• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Guo-bo, HAO Peng-fei, SUN Fu-xue. Spatial influence scope of end wall of metro station structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1435-1445. DOI: 10.11779/CJGE202008008
Citation: WANG Guo-bo, HAO Peng-fei, SUN Fu-xue. Spatial influence scope of end wall of metro station structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1435-1445. DOI: 10.11779/CJGE202008008

Spatial influence scope of end wall of metro station structures

More Information
  • Received Date: December 01, 2019
  • Available Online: December 05, 2022
  • The conventional seismic design of metro stations is to select the mid-span section for calculation analysis and design based on plane problem. However, the spatial effect of end walls must be considered because the area close to the front and rear end walls will inevitably be affected by the end walls and running tunnels. This effect is also called the end wall effect. The rationality of the numerical model is verified based on the numerical simulation of shaking table tests on metro stations and running tunnels firstly. Then a series of parameter analysis is performed on the spatial influence scope of the end wall of the metro station structures, which mainly includes the influences of the number of spans and layers of the metro station structures, soil parameters, seismic wave types and amplitudes, and the number of running tunnels. The calculation and analysis results show that the number of spans, the number of layers and the number of tunnels of the station structures will have certain effect on end walls influence scope. The largest influence area of end wall is the station with 2 layers and 3 spans, and the influence range is 1.6B (B is the structure width). The influence range of end wall effect is related to their own structural characteristics, but they are less affected by the soil parameters and seismic wave types and amplitudes. At the same time, the comparative analysis shows that it is more reasonable to use column end bending moment as evaluation indexes for end wall influence range analysis.
  • [1]
    ZLATANOVIĆ E, LUKIĆ D Č, PROLOVIĆ V, et al. Comparative study on earthquake-induced soil–tunnel structure interaction effects under good and poor soil conditions[J]. European Journal of Environmental and Civil Engineering, 2015, 19(8): 1000-1014. doi: 10.1080/19648189.2014.992548
    [2]
    庄海洋, 王修信, 陈国兴. 软土层埋深变化对地铁车站结构地震反应的影响规律研究[J]. 岩土工程学报, 2009, 31(8): 1258-1266. doi: 10.3321/j.issn:1000-4548.2009.08.017

    ZHUANG Hai-yang, WANG Xiu-xin, CHEN Guo-xing. Earthquake responses of subway station with different depths of soft soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1258-1266. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.08.017
    [3]
    陈磊, 陈国兴, 毛昆明. 框架式地铁车站结构大地震近场地震反应特性的三维精细化非线性分析[J]. 岩土工程学报, 2012, 34(3): 490-496. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203020.htm

    CHEN Lei, CHEN Guo-xing, MAO Kun-ming. 3D refined nonlinear analysis of seismic response characteristics of frame metro station under near-field strong ground motion of large earthquake[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 490-496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203020.htm
    [4]
    王国波. 软土地铁车站结构三维地震响应计算理论与方法的研究[D]. 上海: 同济大学, 2007.

    WANG Guo-bo. Study on Calculation Theory and Method of Three Dimensional Seismic Response of Subway Station Structures in Soft Soil[D]. Shanghai: Tongji University, 2007. (in Chinese)
    [5]
    MOK C M, VALLENAS J, ZHANG M, et al. End Wall Effect for Underground Structures: Three-Dimensional Dynamic Soil-Structure Interaction Parametric Study[C]//Proceedings of 100th Anniversary Earthquake Conference Commemorating the 1906 San Francisco Earthquake. 2006.
    [6]
    HOSSEINI M, ROUDSARI M T. Minimum effective length and modified criteria for damage evaluation of continuous buried straight steel pipelines subjected to seismic waves[J]. Journal of Pipeline Systems Engineering and Practice, 2014, 6(4): 04014018.
    [7]
    陈清军, 李文婷. 地铁车站–隧道–土相互作用体系地震反应[J]. 地震工程与工程振动, 2018, 38(4): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201804002.htm

    CHEN Qing-jun, LI Wen-ting. Seismic responses analysis of subway station-tunnels-soil-interaction system[J]. Earthquake Engineering and Engineering Vibration, 2018, 38(4): 9-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201804002.htm
    [8]
    建筑抗震设计规范:GB 50011—2010[S]. 2010.

    Code for seismic design of buildings: GB 50011—2010[S]. 2010. (in Chinese)
    [9]
    季倩倩. 地铁车站结构振动台模型试验研究[D]. 上海: 同济大学, 2002.

    JI Qian-qian. Shaking Table Testing on Underground Subway Station Structures[D]. Shanghai: Tongji University, 2002. (in Chinese)
    [10]
    MA Xian-feng, WANG Guo-bo, WU Jun, et al. Experimental study on the seismic response of subway station in soft ground[J]. Journal of Earthquake and Tsunami, 2017, 11(5): 1750020-1-27. doi: 10.1142/S1793431117500208
    [11]
    赵丁凤, 阮滨, 陈国兴, 等. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证[J]. 岩土工程学报, 2017, 39(5): 888-895. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705018.htm

    ZHAO Ding-feng, RUAN Bin, CHEN Guo-xing, et al. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888-895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705018.htm
    [12]
    BARD P Y, CHAZELAS J L, GUÉGUEN P, et al. Site-City Interaction[M]. Dordrecht: Springer, 2008: 91-114.
  • Cited by

    Periodical cited type(32)

    1. 高猛,何恩光,周鹏,田淞文. 盾构机切桩对主轴承载荷及寿命的影响. 轴承. 2025(05): 1-7 .
    2. 王德福. 盾构滚刀切削桩基相互作用机理及关键参数分析研究——以海珠湾盾构隧道为例. 现代隧道技术. 2024(01): 216-228 .
    3. 张锟,徐前卫,孙庆文,薛海儒,来守玺. 地铁盾构下穿高层建筑基础的扰动变形影响与实测研究. 城市轨道交通研究. 2024(04): 129-135 .
    4. 乔世范,张睿,王广,王刚,陈道龙,张喆. 砾砂地层盾构切削大直径群桩的刀具研究. 铁道科学与工程学报. 2024(05): 1966-1978 .
    5. 丁小彬,杨辉泰,施钰. EPB盾构刀盘泥饼成因分析及评价模型构建. 华南理工大学学报(自然科学版). 2024(05): 71-83 .
    6. 陈一凡,黄书华,沈翔,盛健,陈湘生,张良. 密集城区超大直径盾构切削群桩对上部建筑物振动影响规律分析. 现代隧道技术. 2024(03): 266-275 .
    7. 周广铁,朱利,高文宪,侯邦,朱睿琦,李娇蓉. 盾构滚刀切削钢筋混凝土桩基影响规律研究. 江西建材. 2024(06): 243-245 .
    8. 韩强,张旭,成铭,胡军勇,谢开晋. 地铁盾构下穿既有车站直接磨桩技术研究. 工程建设与设计. 2024(17): 186-189 .
    9. 白建军,彭凯西,吴奔,梁嘉骏. 盾构直接切削钢筋混凝土桥基引起的变形分析. 现代隧道技术. 2024(S1): 445-453 .
    10. 赵立锋,郭伟,胡适韬,程传过. 盾构穿越既有车站结构地下连续墙施工关键技术研究. 现代隧道技术. 2024(S1): 996-1001 .
    11. 刘欣然,高伟琪,刘学彦,韩汝存,马纯梁. 盾构直接连续切削大直径桩施工技术研究. 现代隧道技术. 2024(S1): 1002-1010 .
    12. 林向阳,高伟琪,刘学彦,赵洪生,郑德文. 盾构直接切削大直径桩施工技术研究. 土木工程学报. 2024(S1): 178-183 .
    13. 万宝林. 盾构穿越既有线运营车站围护桩关键施工技术. 建筑机械化. 2023(03): 24-27 .
    14. 张昆. 盾构掘进遇既有桥桩截桩桥梁防护应用研究. 工程技术研究. 2023(04): 108-110 .
    15. 刘欣玮,杨涛. 地铁隧道下穿既有车站方案研究. 工程技术研究. 2023(04): 208-210 .
    16. 李谷阳,王广. 盾构刀具形状对切削桩基影响及刀具选型研究. 广东建材. 2023(05): 112-115 .
    17. 姜梅杰,徐涛,刘晓凤. 隧道施工对邻近桩基变形与受力影响数值模拟研究. 黑龙江工业学院学报(综合版). 2023(06): 117-125 .
    18. 廖秋林,宋跃均,方建华,杨昊,赵立安,陈子豪. 软流塑地层盾构切削钢筋混凝土桩基工程实践. 都市快轨交通. 2023(05): 100-109 .
    19. 贾蓬,孙占阳,赵文,宋立民. 盾构切削桩基研究现状综述. 隧道建设(中英文). 2023(10): 1637-1656 .
    20. 邱金亮. 大直径盾构隧道近距离穿越桥梁桩基扰动分析. 黑龙江交通科技. 2023(12): 93-96+101 .
    21. 岳玮琦,顾展飞,苏伟林. 盾构滚刀作用下混凝土材料破碎分形与能耗. 材料科学与工程学报. 2023(06): 995-1000+1010 .
    22. 朱敏,徐琛,汪子豪. 富水砂层既有运营车站地下障碍物的冻结法清障方案力学分析及工程应用. 隧道建设(中英文). 2023(S2): 395-405 .
    23. 徐敬民,章定文,刘松玉. 地表框架结构作用下隧道施工诱发的砂质地层变形. 岩土工程学报. 2022(04): 602-612 . 本站查看
    24. 王军. 大直径泥水盾构始发段掘进对近接既有地铁桥梁的影响分析. 中国安全生产科学技术. 2022(04): 176-184 .
    25. 高洪梅,蔡鑫涛,张正,李兆,王志华. 盾构下穿桥梁桩基的截桩效应. 地下空间与工程学报. 2022(06): 2044-2051 .
    26. 张天宝,王雪颖. 基于AHP-熵权法的跨燃气管道现浇梁施工风险评价. 工业安全与环保. 2021(02): 65-69 .
    27. 金平,夏童飞,刘晓阳. 复合地层盾构磨除地下连续墙关键技术研究. 四川建筑. 2021(01): 224-228 .
    28. 奚晓广,吴淑伟,王哲,孙九春,许四法,王瑞. 砂砾地层盾构施工土体变形规律三维数值分析. 地基处理. 2021(01): 29-33 .
    29. 赵勇,周学彬,彭祖民,喻伟,李宏波. 盾构下穿高强预应力管桩基施工技术. 建筑机械化. 2020(08): 51-54 .
    30. 庄欠伟,袁一翔,徐天明,张弛. 射流联合盾构切削钢筋混凝土仿真与试验. 岩土工程学报. 2020(10): 1817-1824 . 本站查看
    31. 李发勇. 可拆解盾构下穿既有桥桩磨桩施工影响研究——以宁波轨道交通4号线柳宁盾构区间为例. 隧道建设(中英文). 2020(10): 1506-1515 .
    32. 周国强,杨高伟,奚灵智. 软土地区地铁盾构区间的桥梁稳定性研究. 工程技术研究. 2020(24): 34-36 .

    Other cited types(10)

Catalog

    Article views (273) PDF downloads (157) Cited by(42)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return