• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Sai-nan, LI Wei-hua, Lee Vincent W, ZHAO Cheng-gang. Seismic response of undersea lining tunnels under incident plane P waves[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1418-1427. DOI: 10.11779/CJGE202008006
Citation: ZHU Sai-nan, LI Wei-hua, Lee Vincent W, ZHAO Cheng-gang. Seismic response of undersea lining tunnels under incident plane P waves[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1418-1427. DOI: 10.11779/CJGE202008006

Seismic response of undersea lining tunnels under incident plane P waves

More Information
  • Received Date: October 11, 2019
  • Available Online: December 05, 2022
  • Based on the wave theory of fluid-saturated porous media by Biot and the ideal wave theory of fluid media, considering the conditions of fluid-solid coupling of undersea saturated soil and seawater-saturated soil-structure dynamic interaction, using the Hankel function integral transformation method (HFITM), an analytical solution is obtained for the scattering problem of incident P waves for an undersea lining tunnel. The Hankel function integral transformation method can better deal with the surface boundary conditions of half space, avoiding the "big arc assumption" in the traditional researches. Based on the analytical solution, the effects of incident angle and incident frequency of P waves, depth of seawater and buried depth of tunnel on site displacement and stress are calculated and analyzed. The results show that the incident angle of P waves, incident infrequency, depth of seawater and buried depth of tunnel have obvious influences on site displacement and tunnel stress. The horizontal displacement of the site and hydrodynamic pressure of the tunnel increase with the increment of incident angle, and the vertical displacement and total tunnel stress decrease with the increment of incident angle. The tunnel stress decreases significantly with the increase of the incident frequency. The site displacement and tunnel stress are the largest when the water depth is 10 times the tunnel radius. The site displacement and tunnel stress decrease with the increasing buried depth.
  • [1]
    朱镜清, 周建. 海底隧道体系地震反应分析方法[J]. 地震工程与工程振动, 1992, 12(2): 90-98. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199202009.htm

    ZHU Jing-qing, ZHOU Jian. A seismic analysis method of undersea tunnels[J]. Earthquake Engineering and Engineering Vibration, 1992, 12(2): 90-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199202009.htm
    [2]
    朱镜清, 李金成. 海水对海底地震动的影响问题[C]//中国地震学会第四次学术大会论文摘要集, 1992, 北京.

    ZHU Jing-qing, LI Jin-cheng. Problem of effects of seawater onundersea ground seismic motion[C]//Proc of China Seismological Society of the 4th Academic Conference, 1992, Beijing. (in Chinese)
    [3]
    朱镜清, 周建. 海底地震动估计的一个流体力学基础[J]. 地震工程与工程振动, 1991, 11(3): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199103007.htm

    ZHU Jing-qing, ZHOU Jian. A fluid mechanics basis for estimating undersea ground motion[J]. Earthquake Engineering and Engineering Vibration, 1991, 11(3): 87-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199103007.htm
    [4]
    朱镜清, 周建, 朱达力. 海底淤泥层对海洋工程地震作用环境的影响问题[J]. 地震工程与工程振动, 1999, 19(3): 1-6. doi: 10.3969/j.issn.1000-1301.1999.03.001

    ZHU Jing-qing, ZHOU Jian, ZHU Da-li. Problem of effects of seafloor silt on earthquake action environment of ocean engineering[J]. Earthquake Engineering and Engineering Vibration, 1999, 19(3): 1-6. (in Chinese) doi: 10.3969/j.issn.1000-1301.1999.03.001
    [5]
    朱镜清. 地震作用下海水与海床土的耦合运动[J]. 地震工程与工程振动, 1988, 8(2): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198802004.htm

    ZHU Jing-qing. Coupled motion between sea water and sea bed-soil under earthquake action[J]. Earthquake Engineering and Engineering Vibration, 1988, 8(2): 37-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198802004.htm
    [6]
    陈向红, 张鸿儒. 暗挖海底隧道地震动水压力响应分析[J]. 北京交通大学学报, 2012, 36(1): 36-40. doi: 10.3969/j.issn.1673-0291.2012.01.007

    CHEN Xiang-hong, ZHANG Hong-ru. Analysis of effect of hydrodynamic pressure on undersea tunnels constructed by excavation method[J]. Journal of Beijing Jiaotong University, 2012, 36(1): 36-40. (in Chinese) doi: 10.3969/j.issn.1673-0291.2012.01.007
    [7]
    栾茂田, 张小玲, 张其一. 地震荷载作用下海底管线周围砂质海床的稳定性分析[J]. 岩石力学与工程学报, 2008, 27(6): 1155-1161. doi: 10.3321/j.issn:1000-6915.2008.06.008

    LUAN Mao-tian, ZHANG Xiao-ling, ZHANG Qi-yi. Stability analysis of sandy seabed around submarine pipelines under seismic load[J]. Chines Journal of Rock Mechanics and Engineering, 2008, 27(6): 1155-1161. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.06.008
    [8]
    席仁强, 陈国兴, 王志华. 覆水场地地震反应分析[J]. 防灾减灾工程学报, 2009, 29(6): 610-617. doi: 10.3969/j.issn.1672-2132.2009.06.003

    XI Ren-qiang, CHEN Guo-xing, WANG Zhi-hua. Seismic response of underwater site[J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(6): 610-617. (in Chinese) doi: 10.3969/j.issn.1672-2132.2009.06.003
    [9]
    程选生, 王建华, 杜修力. 渗流作用下海底隧道的流–固耦合地震响应分析[J]. 现代隧道技术, 2013, 50(6): 44-51. doi: 10.3969/j.issn.1009-6582.2013.06.008

    CHENG Xuan-sheng, WANG Jian-hua, DU Xiu-li. Fluid-solid coupling based seismic response analysis of seabed tunnels during seepage[J]. Modern Tunnelling Technology, 2013, 50(6): 44-51. (in Chinese) doi: 10.3969/j.issn.1009-6582.2013.06.008
    [10]
    刘继国, 程勇, 郭小红. 海底盾构隧道地震响应影响因素分析[J]. 中外公路, 2011, 31(4): 200-203. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201104052.htm

    LIU Ji-guo, CHENG Yong, GUO Xiao-hong. Analysis of factors affecting seismic response of seabed shield tunnel[J]. Journal of China & Foreign Highway, 2011, 31(4): 200-203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201104052.htm
    [11]
    周鹏, 崔杰, 李亚东, 等. 地震P波斜入射下入射角度对海底沉管隧道结构动力响应的影响[J]. 世界地震工程, 2016(3): 78-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201603013.htm

    ZHOU Peng, CUI Jie, LI Ya-dong, et al. Effect of oblique incident angle of P-wave on submarine immersed tunnels[J]. Word Earthquake Engineering, 2016(3): 78-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201603013.htm
    [12]
    巨建民, 李会鹏. P波斜入射下海底沉管隧道地震响应分析[J]. 大连交通大学学报, 2018, 39(6): 115-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201806023.htm

    JU Jian-min, LI Hui-peng. Seismic response analysis of submarine immersed tunnel to P-wave of oblique incidence[J]. Journal of Dalian Jiaotong University, 2018, 39(6): 115-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201806023.htm
    [13]
    郭崇峙. 水下隧道地基地震变形特征与结构地震响应分析[D]. 北京: 北京交通大学, 2013.

    GUO Chong-zhi. Analytical Solution and Numeric Analysis of Seismic Response of the Stratum and Tunnel Under Water[D]. Beijing: Beijing Jiaotong University, 2013. (in Chinese)
    [14]
    赵成刚, 王进廷, 史培新, 等. 流体饱和两相多孔介质动力反应分析的显式有限元法[J]. 岩土工程学报, 2001, 23(2): 178-182. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200102009.htm

    ZHAO Cheng-gang, WANG Jin-ting, SHI Pei-xin, et al. Dynamic analysis of fluid-saturated porous media by using explicit finite element method[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 178-182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200102009.htm
    [15]
    LEE V W. On deformations near circular underground cavity subjected to incident plane SH waves[C]//Proceedings of the Application of Computer Methods in Engineering Conference, 1997, Los Angeles: 951-962.
    [16]
    马宏伟, 陈文化. 大型引水隧道在平面地震波入射下动力响应的解析解[J]. 地震工程与工程振动, 2011, 31(6): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201106001.htm

    MA Hong-wei, CHEN Wen-hua. Analytic solution for seismic responses of large-span diversion tunnel induced by plane seismic waves[J]. Earthquake Engineering and Engineering Vibration, 2011, 31(6): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201106001.htm
    [17]
    马宏伟, 陈文化, 宗琦, 等. P波入射引起的水下输水隧洞地震响应研究[J]. 世界地震工程, 2016(4): 196-204. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201604029.htm

    MA Hong-wei, CHEN Wen-hua, ZONG Qi, et al. Study on seismic response of underwater convey tunnel induced by plane P waves[J]. Word Earthquake Engineering, 2016(4): 196-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201604029.htm
    [18]
    马宏伟, 陈文化, 宗琦. SV波引起的水下输水隧洞平面地震响应研究[J]. 防灾减灾工程学报, 2016(5): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201605012.htm

    MA Hong-wei, CHEN Wen-hua, ZONG Qi. Transverse response of underwater convey tunnel to incident SV waves[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016(5): 82-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201605012.htm
    [19]
    丁曼曼. 水下盾构隧道饱和砂层地震响应的平面解析分析[D]. 北京: 北京交通大学, 2009.

    DING Man-man. Plane Analysis of Seismic Response of the Underwater Saturated Sandy Subsoil with Shield Tunnel[D]. Beijing: Beijing Jiaotong University, 2013. (in Chinese)
    [20]
    BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: I low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168.
    [21]
    LIN C H, LEE V W, TODOROVSKA M I, et al. Zero-stress, cylindrical wave functions around a circular underground tunnel in a flat, elastic half-space: incident P-waves[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10): 879-894.
    [22]
    LAMB H. On the propagation of tremors over the surface of an elastic solid[J]. Philosophical Transactions of the Royal Society of London, 1904, 203: 1-42.
    [23]
    DERESIEWICZ H. The effect of boundaries on wave propagation in a liquid-filled porous solid: I reflection of plane waves at a free plane boundary (non-dissipative case)[J]. Bull Seismol Soc Am, 1960, 50(4): 599-607.
    [24]
    LIN C H, LEE V W, TRIFUNAC M D. The reflection of plane waves in a poroelastic half-space saturated with inviscid fluid[J]. Soil Dynamics & Earthquake Engineering, 2005, 25(3): 205-223.
    [25]
    叶其孝, 沈永欢. 实用数学手册[M]. 北京: 科学出版社, 2006.

    YE Qi-xiao, SHEN Yong-huan. Practical Math Manual[M]. Beijing: Science Press, 2006. (in Chinese)
    [26]
    LIU Z, JU X, WU C, et al. Scattering of plane P1waves and dynamic stress concentration by a lined tunnel in a fluid-saturated poroelastic half-space[J]. Tunnelling & Underground Space Technology, 2017, 67: 71-84.
  • Cited by

    Periodical cited type(9)

    1. 宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 .
    2. 童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 .
    3. 幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 .
    4. 王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 .
    5. 魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 .
    6. 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 .
    7. 刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 .
    8. 高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 .
    9. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看

    Other cited types(14)

Catalog

    Article views PDF downloads Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return