Citation: | CHEN Jian-feng, GU Zi-ang, WANG Xin-tao, NIU Fu-jun, YE Guan-bao, FENG Shou-zhong. Behaviour of embankment on composite foundation with geosynthetic-encased stone columns under freeze-thaw condition[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1393-1400. DOI: 10.11779/CJGE202008003 |
[1] |
ALEXIEW D, BROKEMPER D, LOTHSPEICH S. Geotextile encased columns (GEC): load capacity, geotextile selection and pre-design graphs[C]//Proceedings of the Geo-frontiers Conference, 2005, Austin: 497-510.
|
[2] |
陈建峰, 李良勇, 徐超, 等. 路堤荷载下土工织物散体桩复合地基离心模型试验[J]. 岩土工程学报, 2018, 40(5): 932-938. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805023.htm
CHEN Jian-feng, LI Liang-yong, XU Chao, et al. Centrifuge model tests of composite foundation reinforced with geosynthetic-encased stone columns under embankment load[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 932-938. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805023.htm
|
[3] |
LO S R, ZHANG R, MAK J. Geosynthetic-encased stone columns in soft clay: a numerical study[J]. Geotextiles and Geomembranes, 2010, 28(3): 292-302. doi: 10.1016/j.geotexmem.2009.09.015
|
[4] |
YOO C. Performance of geosynthetic-encased stone columns in embankment construction: numerical investigation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(8): 1148-1160. doi: 10.1061/(ASCE)GT.1943-5606.0000316
|
[5] |
ELSAWY M B D. Behaviour of soft ground improved by conventional and geogrid-encased stone columns, based on FEM study[J]. Geosynthetics International, 2013, 20(4): 276-285. doi: 10.1680/gein.13.00017
|
[6] |
RAJESH S, JAIN P. Influence of permeability of soft clay on the efficiency of stone columns and geosynthetic-encased stone columns–a numerical study[J]. International Journal of Geotechnical Engineering, 2015, 9(5): 483-493. doi: 10.1179/1939787914Y.0000000088
|
[7] |
YOO C. Settlement behavior of embankment on geosynthetic-encased stone column installed soft ground: a numerical investigation[J]. Geotextiles and Geomembranes, 2015, 43(6): 484-492. doi: 10.1016/j.geotexmem.2015.07.014
|
[8] |
RAJESH S. Time-dependent behaviour of fully and partially penetrated geosynthetic encased stone columns[J]. Geosynthetics International, 2016, 24(1): 1-12.
|
[9] |
MOHAPATRA S R, RAJAGOPAL K. Undrained stability analysis of embankments supported on geosynthetic encased granular columns[J]. Geosynthetics International, 2017, 24(5): 465-479. doi: 10.1680/jgein.17.00015
|
[10] |
CHEN J F, LI L Y, XUE J F, et al. Failure mechanism of geosynthetic-encased stone columns in soft soils under embankment[J]. Geotextiles and Geomembranes, 2015, 43(5): 424-431. doi: 10.1016/j.geotexmem.2015.04.016
|
[11] |
ALMEIDA M S S, HOSSEINPOUR I, RICCIO M, et al. Behavior of geotextile-encased granular columns supporting test embankment on soft deposit[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 141(3): 04014116.
|
[12] |
赵明华, 顾美湘, 张玲, 等. 竖向土工加筋体对碎石桩承载变形影响的模型试验研究[J]. 岩土工程学报, 2014, 36(9): 1587-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409006.htm
ZHAO Ming-hua, GU Mei-xiang, ZHANG Ling, et al. Model tests on influence of vertical geosynthetic-encasement on performance of stone columns[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1587-1593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409006.htm
|
[13] |
GU M, ZHAO M, ZHANG L, et al. Effects of geogrid encasement on lateral and vertical deformations of stone columns in model tests[J]. Geosynthetics International, 2015, 23(2): 100-112.
|
[14] |
陈建峰, 王波, 魏静, 等. 加筋碎石桩复合地基路堤模型试验[J]. 中国公路学报, 2015, 28(9): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201509002.htm
CHEN Jian-feng, WANG Bo, FENG Shou-zhong, et al. Model tests of embankments on soft foundation reinforced with geosynthetic-encased stone columns[J]. China Journal of Highway and Transport, 2015, 28(9): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201509002.htm
|
[15] |
FATTAH M Y, ZABAR B S, HASSAN H A. Experimental analysis of embankment on ordinary and encased stone columns[J]. International Journal of Geomechanics, 2016, 16(4): 1-13.
|
[16] |
梁波, 张贵生, 刘德仁. 冻融循环条件下土的融沉性质试验研究[J]. 岩土工程学报, 2006, 28(10): 1213-1217. doi: 10.3321/j.issn:1000-4548.2006.10.007
LIANG Bo, ZHANG Gui-sheng, LIU De-ren. Experimental study on thawing subsidence characters of permafrost under frost heaving and thawing circulation[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1213-1217. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.10.007
|
[17] |
王天亮, 卜建清, 王扬, 等. 多次冻融条件下土体的融沉性质研究[J]. 岩土工程学报, 2014, 36(4): 625-632. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404006.htm
WANG Tian-liang, BU Jian-qing, WANG Yang, et al. Thaw subsidence properties of soils under repeated freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 625-632. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404006.htm
|
[18] |
张玉芝, 杜彦良, 孙宝臣, 等. 季节性冻土地区高速铁路路基冻融变形规律研究[J]. 岩石力学与工程学报, 2014, 33(12): 2546-2553. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412021.htm
ZHANG Yu-zhi, DU Yan-liang, SUN Bao-chen, et al. Roadbed deformation of high-speed railway due to freezing-thawing process in seasonally frozen regions[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2546-2553. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201412021.htm
|
[19] |
陈湘生, 濮家骝, 殷昆亭, 等. 地基冻–融循环离心模型试验研究[J]. 清华大学学报(自然科学版), 2002(4): 531-534. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200204028.htm
CHEN Xiang-sheng, PU Jia-liu, YIN Kun-ting, et al. Centrifuge modelling tests of foundation undergoing two cycles of frost heave and thaw sett lement[J]. Journal of Tsinghua University (Science & Technology), 2002(4): 531-534. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200204028.htm
|
[20] |
ZHOU J, TANG Y Q. Centrifuge experimental study of thaw settlement characteristics of mucky clay after artificial ground freezing[J]. Engineering Geology, 2015, 190: 98-108.
|
[21] |
蔡正银, 张晨, 黄英豪. 冻土离心模拟技术研究进展[J]. 水利学报, 2017, 48(4): 398-407. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201704003.htm
CAI Zheng-yin, ZHANG Chen, HUANG Ying-hao. A review on the development of geotechnical centrifuge modeling technique on frozen ground engineering[J]. Journal of Hydraulic Engineering, 2017, 48(4): 398-407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201704003.htm
|
[22] |
陈建峰, 柳军修, 马君. 实验室用小型单桥静力触探探头的标定[J]. 同济大学学报(自然科学版), 2012, 40(4): 549-552, 588. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201204009.htm
CHEN Jian-feng, LIU Jun-xiu, MA Jun. Calibration of a mniature cone penetrometer for geotechnicalmodel test[J]. Journal of Tongji University (Natural Science), 2012, 40(4): 549-552, 588. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201204009.htm
|
[23] |
陈建峰, 王兴涛, 曾岳, 等. 土工织物散体桩桩体大三轴试验研究[J]. 岩土工程学报, 2017, 39(12): 2212-2218. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201712011.htm
CHEN Jian-feng, WANG Xing-tao, ZENG Yue, et al. Large triaxial compression tests on geosynthetic-encased granular columns[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2212-2218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201712011.htm
|
[24] |
王静, 刘寒冰, 吴春利. 冻融循环对不同塑性指数路基土弹性模量的影响研究[J]. 岩土力学, 2012, 33(12): 3665-3668. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201212023.htm
WANG Jing, LIU Han-bing, WU Chun-li. Influence of freeze-thaw cycles on elastic modulus of subgrade soil with different plasticity indices[J]. Rock and Soil Mechanics, 2012, 33(12): 3665-3668. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201212023.htm
|