Citation: | LU Gao-ming, FENG Xia-ting, LI Yuan-hui, LI Shi-ping, SU Xiang-xin. Effect of microwave-induced fracturing of Chifeng basalt by a multi-mode cavity[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1115-1124. DOI: 10.11779/CJGE202006016 |
[1] |
LU G M, FENG X T, LI Y H, et al. The microwave-induced fracturing of hard rock[J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3017-3032. doi: 10.1007/s00603-019-01790-z
|
[2] |
HASSANI F, NEKOOVAGHT P M, GHARIB N. The influence of microwave irradiation on rocks for microwave- assisted underground excavation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1): 1-15. doi: 10.1016/j.jrmge.2015.10.004
|
[3] |
LINDROTH D P, MORRELL R J, BLAIR J R. Microwave Assisted Hard Rock Cutting: 5003144[P]. 1991.
|
[4] |
卢高明, 李元辉, HASSANI Ferri, 等. 微波辅助机械破岩试验和理论研究进展[J]. 岩土工程学报, 2016, 38(8): 1497-1506. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608018.htm
LU Gao-ming, LI Yuan-hui, HASSANI Ferri, et al. Review of theoretical and experimental studies on mechanical rock fragmentation using microwave-assisted approach[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1497-1506. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608018.htm
|
[5] |
卢高明. 硬岩微波辐射致裂试验研究[D]. 沈阳: 东北大学, 2018.
LU Gao-ming. Experimental Study on the Microwave Fracturing of Hard Rock[D]. Shenyang: Northeastern University, 2018. (in Chinese)
|
[6] |
ENTACHER M, LORENZ S, GALLER R. Tunnel boring machine performance prediction with scaled rock cutting tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70(9): 450-459.
|
[7] |
ROSTAMI J. Performance prediction of hard rock Tunnel Boring Machines (TBMs) in difficult ground[J]. Tunnelling and Underground Space Technology, 2016, 57: 173-182. doi: 10.1016/j.tust.2016.01.009
|
[8] |
JAIN P, NAITHANI A K, SINGH T N. Performance characteristics of tunnel boring machine in basalt and pyroclastic rocks of Deccan traps–A case study[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(1): 36-47. doi: 10.1016/j.jrmge.2013.11.003
|
[9] |
XIA Y M, ZHANG K, LIU J S. Design optimization of TBM disc cutters for different geological conditions[J]. World Journal of Engineering and Technology, 2015, 3(4): 218-231. doi: 10.4236/wjet.2015.34023
|
[10] |
HASSANPOUR J, ROSTAMI J, ZHAO J. A new hard rock TBM performance prediction model for project planning[J]. Tunnelling & Underground Space Technology, 2011, 26(5): 595.
|
[11] |
GONG Q M, ZHAO J. Development of a rock mass characteristics model for TBM penetration rate prediction[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 8-18. doi: 10.1016/j.ijrmms.2008.03.003
|
[12] |
DELIORMANLI A H. Cerchar abrasivity index (CAI) and its relation to strength and abrasion test methods for marble stones[J]. Construction and Building Materials, 2012, 30: 16-21. doi: 10.1016/j.conbuildmat.2011.11.023
|
[13] |
XIA Y M, OUYANG T, ZHANG X M, et al. Mechanical model of breaking rock and force characteristic of disc cutter[J]. Journal of Central South University, 2012, 19(7): 1846-1858. doi: 10.1007/s11771-012-1218-8
|
[14] |
党建涛, 刘福生, 王红霞, 等. 引汉济渭工程秦岭隧洞TBM的刀具选型试验[J]. 水利水电技术, 2017, 48(12): 63-69, 94. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201712011.htm
DANG Jian-tao, LIU Fu-sheng, WANG Hong-xia, et al. Experiment on selection of TBM cutter for construction of Qinling Tunnel for Hanjiang-to-Weihe Rriver Valley Water Diversion Project[J]. Water Resources and Hydropower Engineering, 2017, 48(12): 63-69, 94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201712011.htm
|
[15] |
LI X G, YUAN D J. Creating a working space for modifying and maintaining the cutterhead of a large-diameter slurry shield: a case study of Beijing railway tunnel construction[J]. Tunnelling and Underground Space Technology, 2018, 72: 73-83. doi: 10.1016/j.tust.2017.11.008
|
[16] |
FILBÀ M, SALVANY J M, JUBANY J, et al. Tunnel boring machine collision with an ancient boulder beach during the excavation of the Barcelona city subway L10 line: a case of adverse geology and resulting engineering solutions[J]. Engineering Geology, 2016(200): 31-46.
|
[17] |
LU G M, FENG X T, LI Y H, et al. Experimental investigation on the effects of microwave treatment on basalt heating, mechanical strength, and fragmentation[J]. Rock Mechanics and Rock Engineering, 2019, 52(8): 2535-2549. doi: 10.1007/s00603-019-1743-y
|
[18] |
LU G M, FENG X T, LI Y H, et al. The influence of microwave treatment on mechanical behaviour of compact basalts under different confining pressures[J/DL]. Journal of Rock Mechanics and Geotechnical Engineering, 2020. doi: 10.1016/j.jrmge.2019.06.009
|
[19] |
HASSANI F, NEKOOVAGHT P. The development of microwave assisted machineries to break hard rocks[C]//Proceedings of the 28th International Symposium on Automation and Robotics in Construction (isarc), 2011, Seoul: 678-684.
|
[20] |
HASSANI F, NEKOOVAGHT PM, RADZISZEWSKI P, et al. Microwave assisted mechanical rock breaking[C]//Proceedings of the 12th Isrm International Congress on Rock Mechanics, 2011, Beijing: 2075-2080.
|
[21] |
HARTLIEB P, TOIFL M, KUCHAR F, et al. Thermo- physical properties of selected hard rocks and their relation to microwave-assisted comminution[J]. Minerals Engineering, 2016, 91: 34-41. doi: 10.1016/j.mineng.2015.11.008
|
[22] |
HARTLIEB P, KUCHAR F, MOSER P, et al. Reaction of different rock types to low-power (3.2 kW) microwave irradiation in a multimode cavity[J]. Minerals Engineering, 2018, 118: 37-51. doi: 10.1016/j.mineng.2018.01.003
|
[23] |
PEINSITT T, KUCHAR F, HARTLIEB P, et al. Microwave heating of dry and water saturated basalt, granite and sandstone[J]. International Journal of Mining and Mineral Engineering, 2010, 2(1): 18-29. doi: 10.1504/IJMME.2010.031810
|
[24] |
HONG Y D, LIN B Q, ZHU C J, et al. Effect of microwave irradiation on petrophysical characterization of coals[J]. Applied Thermal Engineering, 2016(6): 1109-1125.
|
[25] |
LI H, LIN B, YANG W, et al. Experimental study on the petrophysical variation of different rank coals with microwave treatment[J]. International Journal of Coal Geology, 2016, 154/155: 82-91. doi: 10.1016/j.coal.2015.12.010
|
[26] |
ZHENG Y L, ZHANG Q, ZHAO J. Effect of microwave treatment on thermal and ultrasonic properties of gabbro[J]. Applied Thermal Engineering, 2017, 127: 359-369. doi: 10.1016/j.applthermaleng.2017.08.060
|
[27] |
LU G M, LI Y H, HASSANI F, et al. The influence of microwave irradiation on thermal properties of main rock-forming minerals[J]. Applied Thermal Engineering, 2017, 112(2): 1523-1532.
|
[28] |
田军, 卢高明, 冯夏庭, 等. 主要造岩矿物微波敏感性试验研究[J]. 岩土力学, 2019, 40(6): 2066-2074. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906006.htm
TIAN Jun, LU Gao-ming, FENG Xia-ting, et al. Experimental study on the microwave sensitivity of main rock-forming minerals[J]. Rock and Soil Mechanics, 2019, 40(6): 2066-2074. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906006.htm
|
[29] |
BIENIAWSKI Z T, BERNEDE M J. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 1979, 16(2): 138-140.
|
[30] |
Suggested methods for determining tensile strength of rock materials[J]. International Journal of Rock Mechanics & Mining Science & Geomechanics Abstracts, 1978(15): 99-103.
|
[31] |
FRANKLIN J A. Suggested method for determining point load strength[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1985(2): 51-60.
|
[32] |
徐小荷, 余静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984.
XU Xiao-he, YU Jing. Rock Fragmentation[M]. Beijing: Coal Industry Press, 1984. (in Chinese)
|
[33] |
巴拉诺夫 E.T., 徐小荷. 岩石普氏坚固性系数的应用[J]. 国外金属矿采矿, 1985(1): 17-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GWKS198501005.htm
BARANOV E T, XU Xiao-he. The application of rock Prussian firmness coefficient[J]. Foreign Metal Mining Magazine, 1985(1): 17-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWKS198501005.htm
|
[34] |
AHRENS T J. Mineral Physics & Crystallography: A Handbook of Physical Constants[M]. Washington DC: American Geophysical Union, 1995.
|