• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Meng-cheng, WANG Zi-xuan, WANG Yang-yang. Constitutive modeling of creep behaviors of coarse-grained materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1108-1114. DOI: 10.11779/CJGE202006015
Citation: LIU Meng-cheng, WANG Zi-xuan, WANG Yang-yang. Constitutive modeling of creep behaviors of coarse-grained materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1108-1114. DOI: 10.11779/CJGE202006015

Constitutive modeling of creep behaviors of coarse-grained materials

More Information
  • Received Date: April 12, 2019
  • Available Online: December 07, 2022
  • The creep empirical model, which is characterized as an exponential function, is proposed for coarse-grained materials (CGMs) based on analyses of their creep evolution, and the final creeps are described by the state-dependent formulations. Within a constitutive framework of coupled breakage and friction dissipation (CBFD), an elasto-visco-plasticity model is developed for CGMs by incorporating the above-mentioned creep formulations into the hardening rules of post CBFD elasto-plasticity model. The reasonability and reliability of this model are preliminarily verified using the test data of a series of triaxial creep tests on CGMs. The numerical simulation about a high embankment (HE) filled with CGMs shows that: (1) The temporal and spatial evolution of stresses predicted by this model in the HE agrees with the measured trend of stress change in the HE projects; (2) Within 3 years of pos construction, the model predictions of settlement in the HE are in good agreement with the in-situ measured results. (3) The creep effect of CGMs is remarkable, and it is a significant factor which results in the long-term post construction settlement of HE filled with CGMs.
  • [1]
    PARKIN A K. Settlement rate behavior of some fill dams in Australia[C]//Proceedings of 11th ICSMFE, 1985, San Francisco: 2007-2010.
    [2]
    程展林, 丁红顺. 堆石料蠕变特性试验研究[J]. 岩土工程学报, 2004, 26(4): 473-476. doi: 10.3321/j.issn:1000-4548.2004.04.009

    CHENG Zhan-lin, DING Hong-shun. Creep test for rockfill[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 473-476. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.04.009
    [3]
    ZHANG B Y, CHEN T, PENG C, et al. Experimental study on loading-creep coupling effect in rockfill material[J]. International Journal of Geomechanics, ASCE, 2017, 17(9): 1-12.
    [4]
    FU Z Z, CHEN S S, SHI B X. Large-scale triaxial experiments on the creep behavior of a saturated rockfill material[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2018, 144(7): 1-10.
    [5]
    FEDA J. Creep of Soils and Related Phenomena[M]. Amsterdam: Elsevier, 1992.
    [6]
    王勇, 殷宗泽. 一个用于面板坝流变分析的堆石流变模型[J]. 岩土力学, 2000, 21(3): 227-230. doi: 10.3969/j.issn.1000-7598.2000.03.009

    WANG Yong, YIN Zong-ze. A rheology model of rockfill used in the rheology analysis of concrete face rockfill dam[J]. Rock and Soil Mechanics, 2000, 21(3): 227-230. (in Chinese) doi: 10.3969/j.issn.1000-7598.2000.03.009
    [7]
    ZHOU W, CHANG X L, ZHOU C B, et al. Creep analysis of high concrete-faced rockfill dam[J]. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26(11): 1477-1492. doi: 10.1002/cnm.1230
    [8]
    ZHOU W, HUA J, CHANG X, et al. Settlement analysis of the Shuibuya concrete-face rockfill dam[J]. Computers and Geotechnics, 2011, 38(2): 269-280. doi: 10.1016/j.compgeo.2010.10.004
    [9]
    CHARLES J A. Laboratory compression tests and the deformation of rockfill structures[C]//Advances in Rockfill Structures, 1990, Dordrecht: 73-95.
    [10]
    OLDECOP L A, PINYOL N M. Time-dependent behaviour of rockfill embankments and dams[C]//Innovative Numerical Modeling in Geomechanics, 2012, Boca Raton in Florida: 161-170.
    [11]
    王海俊, 殷宗泽. 堆石料长期变形的室内试验研究[J]. 水利学报, 2007, 38(8): 914-919. doi: 10.3321/j.issn:0559-9350.2007.08.004

    WANG Hai-jun, YIN Zong-ze. Experimental study on deformation of rockfill material due to long-term cyclic wetting-drying[J]. Journal of Hydraulic Engineering, 2007, 38(8): 914-919. (in Chinese) doi: 10.3321/j.issn:0559-9350.2007.08.004
    [12]
    OLDECOP L A, ALONSO E E. Theoretical investigation of the time-dependent behaviour of rockfill[J]. Géotechnique, 2007, 57(3): 289-301. doi: 10.1680/geot.2007.57.3.289
    [13]
    张丙印, 孙国亮, 张宗亮. 堆石料的劣化变形和本构模型[J]. 岩土工程学报, 2010, 32(1): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001018.htm

    ZHANG Bing-yin, SUN Guo-liang, ZHANG Zong-liang. Degrading deformation of rockfill materials and its constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 98-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001018.htm
    [14]
    WEN L F, CHAI J R, XU Z G, et al. Monitoring and numerical analysis of behavior of Miaojiaba concrete-face rockfill dam built on river gravel foundation in China[J]. Computers and Geotechnics, 2017, 85: 230-248. doi: 10.1016/j.compgeo.2016.12.018
    [15]
    JUSTO J L, DURAND P. Settlement-time behavior of granular embankments[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24: 281-303. doi: 10.1002/(SICI)1096-9853(200003)24:3<281::AID-NAG66>3.0.CO;2-S
    [16]
    陈晓斌, 张家生, 封志鹏. 红砂岩粗粒土流变工程特性试验研究[J]. 岩石力学与工程学报, 2007, 26(3): 601-607. doi: 10.3321/j.issn:1000-6915.2007.03.023

    CHEN Xiao-bin, ZHANG Jia-sheng, FENG Zhi-peng. Experimental study on rheological engineering properties of coarsely granular red sandstone soil[J]. Chinese Rock Mechanics and Engineering, 2007, 26(3): 601-607. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.03.023
    [17]
    YIN J H. Fundamental issues of elastic viscoplastic modeling of the time-dependent stress-strain behavior of geomaterials[J]. International Journal of Geomechanics, ASCE, 2015, 15(5): 1-5.
    [18]
    PRAMTHAWEE P, JONGPRADIST P, SUKKARAK R. Integration of creep into a modified hardening soil model for time-dependent analysis of a high rockfill dam[J]. Computers and Geotechnics, 2017, 91: 104-116. doi: 10.1016/j.compgeo.2017.07.008
    [19]
    KONG Y F, XU M, SONG E X. An elastic-viscoplastic double-yield-surface model for coarse-grained soils considering particle breakage[J]. Computers and Geotechnics, 2017, 85: 59-70. doi: 10.1016/j.compgeo.2016.12.014
    [20]
    YAO Y P, KONG L M, ZHOU A N, et al. Time-dependent unified hardening model: three-dimensional elasto-visco- plastic constitutive model for clays[J]. Journal of Engineering Mechanics, ASCE, 2015, 141(6): 1-18.
    [21]
    姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201612004.htm

    YAO Yang-ping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201612004.htm
    [22]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112.
    [23]
    LIU M C, GAO Y F, LIU H L. An elastoplastic constitutive model for rockfills incorporating energy dissipation of nonlinear friction and particle breakage[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(9): 935-960.
    [24]
    RICHART F E, HALL J R, WOODS R D. Vibrations of Soils and Foundations[M]//Englewood Cliffs. New Jersey: Prentice-Hall, 1970.
  • Cited by

    Periodical cited type(23)

    1. 陈欣,安然,张先伟,陈昶,袁童. MICP固化花岗岩残积土的崩解特性. 长江科学院院报. 2025(02): 138-144+171 .
    2. 徐敏,刘正明,罗元喜,许宝田,刘开斌. 基于旁压试验的常州地区典型砂土变形特性研究. 工程勘察. 2024(07): 15-21 .
    3. 杨雪强,王坤,刘攀,朱海平,林楷彦. 广州原状花岗岩残积土非饱和力学特性的试验研究. 水利水电技术(中英文). 2024(06): 196-206 .
    4. 宋伟,房江锋,杜琦,李芬. 某项目抗拔桩承载力不足原因分析及处理研究. 工程质量. 2024(S2): 41-45 .
    5. 房江锋,张思祺,杜琦. 灌注桩抗拔承载力不足分析及应对措施研究. 低温建筑技术. 2024(12): 66-71 .
    6. 舒荣军,孔令伟,周振华,简涛,李甜果. 卸荷-增孔压条件下花岗岩残积土的力学特性. 岩土力学. 2023(02): 473-482 .
    7. 廖燕宏,王冉,夏玉云,乔建伟,贾如宾,杨晓鹏. 安哥拉花岗岩残积土强夯法地基处理试验研究. 施工技术(中英文). 2023(07): 149-154 .
    8. 陈欣,安然,汪亦显,陈昶. 胶结液浓度对MICP固化残积土力学性能影响及机理研究. 水利与建筑工程学报. 2023(06): 100-106+149 .
    9. 张晗,杨石飞,王琳,林天翔. 上海地区软土旁压加卸载变形特性试验研究. 岩土工程学报. 2022(04): 769-777 . 本站查看
    10. 冯义武,彭倞,岳娟. 亚湖水库花岗岩风化残积土防渗应用研究. 水利水电快报. 2022(04): 61-66+73 .
    11. 朱旻,陈湘生,张国涛,庞小朝,苏栋,刘继强. 花岗岩残积土硬化土模型参数反演及工程应用. 岩土力学. 2022(04): 1061-1072 .
    12. 齐信,黎清华,焦玉勇,谭飞. 梧州市巨厚层花岗岩风化壳垂直分带标准及工程地质特征研究. 工程地质学报. 2022(02): 407-416 .
    13. 安然,孔令伟,师文卓,郭爱国,张先伟. 结构性黏土的原位刚度衰减规律及数学表征. 岩土力学. 2022(S1): 410-418 .
    14. 安然,孔令伟,张先伟,郭爱国,柏巍. 基于原位孔内剪切试验的残积土强度指标及风化程度影响评价. 应用基础与工程科学学报. 2022(05): 1275-1286 .
    15. 舒荣军,孔令伟,黎澄生,刘炳恒,简涛. 考虑先期卸荷静偏应力的花岗岩残积土动力特性研究. 振动与冲击. 2022(17): 93-100 .
    16. 苗永红,卜梓轩,王玲,苏靖凤,殷杰. 扰动对软土累积排水量影响试验研究. 西安理工大学学报. 2022(03): 421-425 .
    17. 舒荣军,孔令伟,王俊涛,简涛,周振华. 考虑先期卸荷影响的花岗岩残积土湿化特性试验研究. 岩土工程学报. 2022(S1): 154-159+165 . 本站查看
    18. 王斌,韩幽铭,周欣,陈成,张先伟,桂蕾. 太湖湖相黏土层剪切模量衰减特性的原位测试研究. 岩土力学. 2021(07): 2031-2040 .
    19. 胡华,吴轩,张越. 基于降雨滑坡模拟试验的花岗岩残积土边坡破坏模式分析. 厦门大学学报(自然科学版). 2021(06): 1098-1102 .
    20. 安然,孔令伟,张先伟. 残积土孔内剪切试验的强度特性及广义邓肯–张模型研究. 岩土工程学报. 2020(09): 1723-1732 . 本站查看
    21. 安然,孔令伟,黎澄生,罗晓倩. 炎热多雨气候下花岗岩残积土的强度衰减与微结构损伤规律. 岩石力学与工程学报. 2020(09): 1902-1911 .
    22. 安然,孔令伟,柏巍,黎澄生. 单轴荷载下残积土的电阻率损伤模型及干湿循环效应. 岩石力学与工程学报. 2020(S1): 3159-3167 .
    23. 易军. 风荷载下的黄家仑地区残积土动静力特性研究. 长沙大学学报. 2020(05): 32-37 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return