QIN Hui-lai, ZHOU Yu-qi, HUANG Mao-song, ZHOU Tong-he. Passive earth pressure analysis of berm-retained excavation by upper bound method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1101-1107. DOI: 10.11779/CJGE202006014
    Citation: QIN Hui-lai, ZHOU Yu-qi, HUANG Mao-song, ZHOU Tong-he. Passive earth pressure analysis of berm-retained excavation by upper bound method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1101-1107. DOI: 10.11779/CJGE202006014

    Passive earth pressure analysis of berm-retained excavation by upper bound method

    More Information
    • Received Date: July 03, 2019
    • Available Online: December 07, 2022
    • The passive earth pressure should be known for the design of the berm-retained excavation, but no reasonable method for calculating the passive earth pressure has been found until now. According to the characteristics of the berm-retained excavation, the upper bound method based on the limit analysis theory is used to analyze the passive earth pressure provided by the passive soil area. To use the upper bound method, the vertical slice blocks are used to separate the passive soil area of the berm-retained excavation, and a compatible speed field is constructed. The optimization analysis technology is used to obtain the minimum upper bound solution. In order to test the rationality of the proposed upper bound solution, the passive earth pressures with different wall heights, geological parameters and other conditions are calculated by the proposed upper bound method, and the values and failure envelops are compared with the classical Rankine’s solutions. By employing the proposed upper bound method, the value of the passive earth pressure, the distribution of the passive earth pressure along the retaining wall, the failure envelops of passive soil area are studied under different parameters such as the berm top width, berm bottom width, berm height and berm slope coefficient. The influences of these parameters on the passive earth pressure and the failure envelops are discussed. The proposed method may lay the foundation for the design and optimization design of the berm-retained excavation in the future.
    • [1]
      李顺群, 郑刚, 王英红. 反压土对悬臂式支护结构嵌固深度的影响研究[J]. 岩土力学, 2011, 32(11): 3427-3431. doi: 10.3969/j.issn.1000-7598.2011.11.037

      LI Shun-qun, ZHENG Gang, WANG Ying-hong. Influence of earth berm on embedment depth of cantilever retaining structure for pit excavation[J]. Rock and Soil Mechanics, 2011, 32(11): 3427-3431. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.11.037
      [2]
      龚剑, 王旭军, 赵锡宏. 深大基坑首层盆式开挖对基坑变形影响分析[J]. 岩土力学, 2013, 34(2): 439-448. doi: 10.16285/j.rsm.2013.02.041

      GONG Jian, WANG Xu-jun, ZHAO Xi-hong. Analysis level basin excavation on deformation of deep and large foundation pits[J]. Rock and Soil Mechanics, 2013, 34(2): 439-448. (in Chinese) doi: 10.16285/j.rsm.2013.02.041
      [3]
      FLEMING W G K, WELTMAN A J, RANDOLPH M F, et al. Piling Engineering[M]. London, New York: Taylor & Francis, 2008.
      [4]
      POWRIE W, DALY M P. Centrifuge model tests on embedded retaining walls supported by earth berms[J]. Géotechnique, 2002, 52(2): 89-106. doi: 10.1680/geot.2002.52.2.89
      [5]
      DALY M P, POWRIE W. Undrained analysis of earthberms as temporary supports for embedded retaining walls[J]. Proceeding of the Institution of Civil Engineers- Geotechnical Engineering, 2001, 149(4): 237-248. doi: 10.1680/geng.2001.149.4.237
      [6]
      SMETHURST J A, POWRIE W. Effective-stress analysis of berm-supported retaining walls[J]. Proceeding of the Institution of Civil Engineers-Geotechnical Engineering, 2008, 161(1): 39-48.
      [7]
      郑刚, 陈红庆, 雷扬, 等. 基坑开挖反压土作用机制及其简化分析方法研究[J]. 岩土力学, 2007, 28(6): 1161-1166. doi: 10.3969/j.issn.1000-7598.2007.06.018

      ZHENG Gang, CHEN Hong-qing, LEI Yang, et al. A study of mechanism of earth berm and simplified analysis method for excavation[J]. Rock and Soil Mechanics, 2007, 28(6): 1161-1166. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.06.018
      [8]
      张浩, 郭院成, 石名磊, 等. 坑内预留土作用下多支点支护结构的变形内力计算[J]. 岩土工程学报, 2018, 40(1): 162-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801021.htm

      ZHANG Hao, GUO Yuan-cheng, SHI Ming-lei, et al. Calculation of deformation and internal force of multi-pivot retaining structure considering influence of earth berm[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 162-168. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801021.htm
      [9]
      GEORGIADIS M, ANAGNOSTOPOULOS C. Effect of berms on sheet pile wall behavior[J]. Géotechnique, 1998, 48(4): 569-574. doi: 10.1680/geot.1998.48.4.569
      [10]
      GOURVENEC S M, POWRIE W. Three-dimensional finite element analysis of embedded retaining walls supported by discontinuous earth berms[J]. Canadian Geotechnical Journal, 2000, 37(5): 1062-1077. doi: 10.1139/t00-033
      [11]
      尹盛斌. 基坑预留土台的简化分析方法研究[J]. 岩土力学, 2016, 37(2): 524-536. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602029.htm

      YIN Sheng-bin. A simplified analysis method for earth berm in foundation pit[J]. Rock and Soil Mechanics, 2016, 37(2): 524-536. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602029.htm
      [12]
      刘畅, 孙盼盼, 赵露伟, 等. 基坑开挖反压土截面特性对基坑性状影响的有限元分析[J]. 地下空间与工程学报, 2017, 13(3): 788-795. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201703033.htm

      LIU Chang, SUN Pan-pan, ZHAO Lu-wei, et al. Finite element analysis of earth berm excavation pit traits affect section properties[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(3): 788-795. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201703033.htm
      [13]
      CHEN W F. Limit Analysis and Soil Plasticity[M]. Amsterdam: Elsevier Science, 1975.
      [14]
      秦会来, 黄茂松, 马少坤. 黏土基坑抗隆起稳定分析的多块体上限解[J]. 岩石力学与工程学报, 2010, 29(1): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201001008.htm

      QIN Hui-lai, HUANG Mao-song, MA Shao-kun. Multi-block upper bound method for basal heave stability analysis of braced excavation in clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 73-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201001008.htm
      [15]
      秦会来, 黄茂松. 双层地基极限承载力的极限分析上限法[J]. 岩土工程学报, 2008, 30(4): 611-616. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200804027.htm

      QIN Hui-lai, HUANG Mao-song. Upper-bound method for calculating bearing capacity of strip footings on two-layer soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 611-616. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200804027.htm
      [16]
      MICHALOWSKI R L. Slope stability analysis: a kinematical approach[J]. Géotechnique, 1995, 45(2): 283-293.
      [17]
      宋春霞, 黄茂松, 周维祥. 黏土地层隧道开挖面三维稳定性上限分析[J]. 岩土工程学报, 2015, 37(4): 650-658. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504012.htm

      SONG Chun-xia, HUANG Mao-song, ZHOU Wei-xiang. Three-dimensional face stability analysis of tunnels in cohesive soils by upper bound limit method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 650-658. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504012.htm
      [18]
      DRESCHER A, DETOURNAY E. Limit load in translational failure mechanisms for associative and nonassociative materials[J]. Géotechnique, 1993, 43(3): 443-456.
      [19]
      DONALD I B, CHEN Z Y. Slope stability analysis by the upper bound approach: fundamentals and methods[J]. Canadian Geotechnical Journal, 1997, 34(6): 853-862.
    • Cited by

      Periodical cited type(1)

      1. 孙胜难,袁铸钢,刘钊,马洪浩. 基于随机森林回归算法的水泥立式磨磨内压差预测. 洛阳理工学院学报(自然科学版). 2024(02): 44-50 .

      Other cited types(6)

    Catalog

      Article views (318) PDF downloads (222) Cited by(7)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return