• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Chen-rong, ZHU Zhi-qi, YU Feng, WANG Bo-wei, HUANG Mao-song. Accumulative displacement of long-term cyclic laterally loaded monopiles with large diameter sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1076-1084. DOI: 10.11779/CJGE202006011
Citation: ZHANG Chen-rong, ZHU Zhi-qi, YU Feng, WANG Bo-wei, HUANG Mao-song. Accumulative displacement of long-term cyclic laterally loaded monopiles with large diameter sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1076-1084. DOI: 10.11779/CJGE202006011

Accumulative displacement of long-term cyclic laterally loaded monopiles with large diameter sand

More Information
  • Received Date: September 11, 2019
  • Available Online: December 07, 2022
  • The accumulative displacement of offshore wind power under long-term cyclic lateral loads from wind and wave loads attracts a lot of attention, for it may lead to the malfunction of a wind turbine. Considering the cyclic loading characteristics of sandy soil around piles, the lateral cyclic response of monopile for offshore wind power is investigated. The R-O loading curve and modified Masing rule are used to construct loading and unloading stress-strain curves of sand. Based on the explicit equation for cyclic accumulative axial strain of sand, a cyclic evolution model for secant stiffness of sand is derived, and it is applied in the FE analysis. By comparing with the published centrifuge test results of a laterally loaded monopile in sand, the rationality of the evolution model is verified. A parametric analysis considering different embedment lengths of the pile is also undertaken. It is believed that the FE analysis with the evolution model for secant stiffness of sand can rationally simulate the development of the accumulative rotation of a horizontal cyclic loaded monopile, which provides theoretical support for the design of the cyclic response of wind turbines.
  • [1]
    ARANY L, BHATTACHARYA S, MACDONALD J, et al. Design of monopiles for offshore wind turbines in 10 steps[J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 126-152. doi: 10.1016/j.soildyn.2016.09.024
    [2]
    LITTLE RL, BRIAUD JL. Full Scale Cyclic Lateral Load Tests on Six Single Piles in Sand (No. TAMU-RR-5640)[R]. Texas: College Station, 1988.
    [3]
    LONG J, VANNESTE G. Effects of cyclic lateral loads on piles in sand[J]. Journal of Geotechnical Engineering, 1994, 120(1): 225-244. doi: 10.1061/(ASCE)0733-9410(1994)120:1(225)
    [4]
    LIN S S, LIAO J C. Permanent strains of piles in sand due to cyclic lateral loads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 798-802. doi: 10.1061/(ASCE)1090-0241(1999)125:9(798)
    [5]
    LEBLANC C, HOULSBY G T, BYRNE B W. Response of stiff piles in sand to long-term cyclic lateral loading[J]. Géotechnique, 2010, 60(2): 79-90. doi: 10.1680/geot.7.00196
    [6]
    CHEN R P, SUN Y X, ZHU B, et al. Lateral cyclic pile–soil interaction studies on a rigid model monopile[J]. Proceedings of the ICE - Geotechnical Engineering, 2015, 168(2): 120-130. doi: 10.1680/geng.14.00028
    [7]
    ZHU B, BYRNE B W, HOULSBY G T. Long-term lateral cyclic response of suction caisson foundations in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(1): 73-83. doi: 10.1061/(ASCE)GT.1943-5606.0000738
    [8]
    ZHANG C, ZHANG X, HUANG M, et al. Responses of caisson-piles foundations to long-term cyclic lateral load and scouring[J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 62-74. doi: 10.1016/j.soildyn.2018.12.026
    [9]
    ZHU F Y, O'LOUGHLIN C D, BIENEN B, et al. The response of suction caissons to long-term lateral cyclic loading in single-layer and layered seabeds[J]. Géotechnique, 2018, 68(8): 729-741. doi: 10.1680/jgeot.17.P.129
    [10]
    ALLOTEY N, EL NAGGAR M H. A numerical study into lateral cyclic nonlinear soil–pile response[J]. Canadian Geotechnical Journal, 2008, 45(9): 1268-1281. doi: 10.1139/T08-050
    [11]
    HEIDARI M, JAHANANDISH M, EL NAGGAR H, et al. Nonlinear cyclic behavior of laterally loaded pile in cohesive soil[J]. Canadian Geotechnical Journal, 2014, 51(2): 129-143. doi: 10.1139/cgj-2013-0099
    [12]
    MEMARPOUR M M, KIMIAEI M, SHAYANFAR M, et al. Cyclic lateral response of pile foundations in offshore platforms[J]. Computers and Geotechnics, 2012, 42: 180-192. doi: 10.1016/j.compgeo.2011.12.007
    [13]
    GIANNAKOS S, GEROLYMOS N, GAZETAS G. Cyclic lateral response of piles in dry sand: finite element modeling and validation[J]. Computers and Geotechnics, 2012, 44: 116-131. doi: 10.1016/j.compgeo.2012.03.013
    [14]
    BOURGEOIS E, RAKOTONINDRIANA M H J, LE KOUBY A, et al. Three-dimensional numerical modelling of the behaviour of a pile subjected to cyclic lateral loading[J]. Computers and Geotechnics, 2010, 37(7/8): 999-1007.
    [15]
    ACHMUS M, KUO Y S, ABDEL-RAHMAN K. Behavior of monopile foundations under cyclic lateral load[J]. Computers and Geotechnics, 2009, 36(5): 725-735. doi: 10.1016/j.compgeo.2008.12.003
    [16]
    DEPINA I, LE T M H, EIKSUND G, ET AL. Behavior of cyclically loaded monopile foundations for offshore wind turbines in heterogeneous sands[J]. Computers and Geotechnics, 2015, 65: 266-277. doi: 10.1016/j.compgeo.2014.12.015
    [17]
    RAMBERG W, OSGOOD W R. Description of stress-strain curves by three parameters[J]. National Advisory Committee for Aeronautics, 1943: 902.
    [18]
    MASING G. Eigenspannungeu und verfertigung beim Messing[C]//Proceedings of the 2nd International Congress on Applied Mechanics, 1926, Zurich.
    [19]
    PYKE R M. Nonlinear soil models for irregular cyclic loadings[J]. Journal of Geotechnical Engineering Division, 1979, 105(6): 715-726. doi: 10.1061/AJGEB6.0000820
    [20]
    ZHUZhi-qiLong-Term Displacement Accumulation of Cyclic Laterally Loaded Monopile in SandShanghaiTongji University2018 https://xuewen.cnki.net/CCND-JFRB202211070012.html

    ZHU Zhi-qi. Long-Term Displacement Accumulation of Cyclic Laterally Loaded Monopile in Sand[D]. Shanghai: Tongji University, 2018. (in Chinese)

    [21]
    黄茂松, 李进军, 李兴照. 饱和软粘土的不排水循环累积变形特性[J]. 岩土工程学报, 2006, 28(7): 891-895. doi: 10.3321/j.issn:1000-4548.2006.07.016

    HUANG Mao-song, LI Jin-jun, LI Xing-zhao. Cumulative deformation behaviour of soft clay in cyclic undrained tests[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 891-895. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.07.016
    [22]
    BOLTON M D. The strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65-78. doi: 10.1680/geot.1986.36.1.65
    [23]
    PASTEN C, SHIN H, SANTAMARINA J C. Long-term foundation response to repetitive loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(4): 04013036. doi: 10.1061/(ASCE)GT.1943-5606.0001052
    [24]
    NIEMUNIS A, WICHTMANN T, TRIANTAFYLLIDIS T H. A high-cycle accumulation model for sand[J]. Computers and Geotechnics, 2015, 32(4): 245-263.
    [25]
    ZHU B, LI T, XIONG G, et al. Centrifuge model tests on laterally loaded piles in sand[J]. International Journal of Physical Modelling in Geotechnics, 2016, 16(4): 160-172. doi: 10.1680/jphmg.15.00023
    [26]
    王磊, 朱斌, 来向华. 砂土循环累积变形规律与显式计算模型研究[J]. 岩土工程学报, 2015, 37(11): 2024-2029. doi: 10.11779/CJGE201511012

    WANG Lei, ZHU Bin, LAI Xiang-hua. Cyclic accumulative deformation of sand and its explicit model[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2024-2029. (in Chinese) doi: 10.11779/CJGE201511012
  • Related Articles

    [1]XU Jiabao, ZHANG Zechao, ZHANG Lulu, CAO Zijun, WANG Yu, ZHANG Yifan, ZHANG De, CHEN Yangming. Spatial variability characterization of soil properties in offshore wind farms based on Bayesian theory and conditional co-simulation method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1644-1654. DOI: 10.11779/CJGE20221585
    [2]Test method for studying the materials spatial variability of landslide dam[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240742
    [3]ZHANG Jin-zhang, HUANG Hong-wei, ZHANG Dong-ming, PHOON Kok-kwang, TANG Chong. Simplified methods for deformation analysis of tunnel structures considering spatial variability of soil properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 134-143. DOI: 10.11779/CJGE202201013
    [4]JIANG Shui-hua, LIU Xian, HUANG Fa-ming, HUANG Jin-song, ZHOU Chuang-bing. Reliability-based design of slope angles for spatially varying slopes based on inverse first-order reliability method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1245-1252. DOI: 10.11779/CJGE202107009
    [5]CHEN Chang-fu, ZHU Shi-min, GAO Jie, WEN Yong-kai, MAO Feng-shan. Kriging method-based creep model for anchor-soil interface considering grouting pressure[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 125-128. DOI: 10.11779/CJGE2019S1032
    [6]YANG Ge, ZHU Sheng. Seismic response of rockfill dams considering spatial variability of rockfill materials via random finite element method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1822-1832. DOI: 10.11779/CJGE201610011
    [7]TANG Yu-geng, KUNG Gordon Tung-chin. Basal-heave analysis of a braced excavation considering spatial variability of soft ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 542-545.
    [8]SU Yong-hua, LUO Zheng-dong, ZHANG Pan-feng, YANG Hong-bo. Active searching algorithm for slope stability reliability based on Kriging model[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1863-1869.
    [9]LI Dian-qing, JIANG Shui-hua, ZHOU Chuang-bing, PHOON Kok Kwang. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422.
    [10]QI Xiao-hui, LI Dian-qing, ZHOU Chuang-bing, PHOON Kok-kwang. Stochastic analysis method of critical slip surfaces in soil slopes considering spatial variability[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 745-753.
  • Cited by

    Periodical cited type(6)

    1. 刘耀徽,恩和得力海,黄亚平,张耘获,杨坪. 时移跨孔地震全波形反演方法在水泥搅拌桩检测中的应用研究. 地球物理学进展. 2024(05): 2078-2089 .
    2. 张丁宁. 上海滨海平原区土的热物理指标与静力触探Ps值的关系研究. 城市道桥与防洪. 2022(07): 197-199+25 .
    3. 贾剑青,赵阳阳,贾超,辛成平,张帮鑫. 湿陷性黄土地基水泥土搅拌桩加固效果研究. 铁道工程学报. 2022(07): 18-24 .
    4. 何杨闽. 物联网全过程管控水泥搅拌桩关键技术研究. 珠江水运. 2021(11): 36-38 .
    5. 王建梅. 高铁软弱斜坡段路基处理技术研究. 施工技术. 2020(07): 49-53 .
    6. 赵洋洋,杨昌民. 基于RBF神经网络对基桩完整性的预测. 施工技术. 2020(S1): 69-72 .

    Other cited types(1)

Catalog

    Article views (346) PDF downloads (219) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return