• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HE Xiang, MA Guo-liang, WANG Yang, ZHAO Chang, LIU Han-long, CHU Jian, XIAO Yang. Visualization investigation of bio-cementation process based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1005-1012. DOI: 10.11779/CJGE202006003
Citation: HE Xiang, MA Guo-liang, WANG Yang, ZHAO Chang, LIU Han-long, CHU Jian, XIAO Yang. Visualization investigation of bio-cementation process based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1005-1012. DOI: 10.11779/CJGE202006003

Visualization investigation of bio-cementation process based on microfluidics

More Information
  • Received Date: November 03, 2019
  • Available Online: December 07, 2022
  • Biomineralization possesses the capability to bind granular materials, which can be used in the applications of geotechnical engineering as an emerging green ground improvement technology. However, little information is available on the mechanics of biomineralization, especially on the process of biocementation. An optical platform is proposed to visualize the process of biomineralization based on microfluidics. A series of micro-scale investigations related to this process are performed to capture the spatial distribution of calcium carbonate crystals, precipitation patterns and quantitative crystal growth rate. The results show that the convection and diffusion of solvent have significant impacts on the distribution of calcium carbonate, which demonstrates a nonuniform spatiotemporal distribution. The extent of uneven distribution in time scale is reduced as the reaction goes on. However, the phenomenon of uneven distribution in spatial scale is maintained during the whole reaction period (0~2200 min). Two precipitation patterns in biocementation are found in this study, i.e., precipitation at pore and precipitation at sand contacts. The precipitation at pore shows no growth axis, while the precipitation at sand contacts shows growth axis with different growth rates. These investigations may provide new insights into the mechanisms of microbial induced carbonate precipitation and are beneficial for the optimized design of up-scale application.
  • [1]
    何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm

    HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm
    [2]
    刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm

    LIU Han-long, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environme- ntal Engineering, 2019, 41(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
    [3]
    WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423. doi: 10.1080/01490450701436505
    [4]
    DEJONG J T, SOGA K, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges[J]. Geotechnique, 2013, 63(4): 287-301. doi: 10.1680/geot.SIP13.P.017
    [5]
    VAN PAASSEN L A, GHOSE R, VAN DER LINDEN T J M, et al. Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1721-1728. doi: 10.1061/(ASCE)GT.1943-5606.0000382
    [6]
    CUI M J, ZHENG J J, ZHANG R J, et al. Influence of cementation level on the strength behaviour of bio-cemented sand[J]. Acta Geotechnica, 2017, 12(5): 971-986. doi: 10.1007/s11440-017-0574-9
    [7]
    XIAO Y, WANG Y, DESAI C S, et al. Strength and deformation responses of biocemented sands using a temperature-controlled method[J]. International Journal of Geomechanics, 2019, 19(11): 04019120. doi: 10.1061/(ASCE)GM.1943-5622.0001497
    [8]
    崔明娟, 郑俊杰, 章荣军, 等. 化学处理方式对微生物固化砂土强度影响研究[J]. 岩土力学, 2015, 36(增刊1): 392-396. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1068.htm

    CUI Ming-juan, ZHENG Jun-jie, ZHANG Rong-jun, et al. Study of effect of chemical treatment on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2015, 36(S1): 392-396. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1068.htm
    [9]
    XIAO P, LIU H, STUEDLEIN A W, et al. Effect of relative density and biocementation on cyclic response of calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 971-986.
    [10]
    XIAO Y, HE X, EVANS T M, et al. Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019048. doi: 10.1061/(ASCE)GT.1943-5606.0002108
    [11]
    彭劼, 温智力, 刘志明, 等. 微生物诱导碳酸钙沉积加固有机质黏土的试验研究[J]. 岩土工程学报, 2019, 41(4): 733-740. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904022.htm

    PENG Jie, WEN Zhi-li, LIU Zhi-ming, et al. Experimental research on MICP-treated organic clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 733-740. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904022.htm
    [12]
    XIAO Y, STUEDLEIN A W, RAN J Y, et al. Effect of particle shape on strength and stiffness of biocemented glass beads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 06019016. doi: 10.1061/(ASCE)GT.1943-5606.0002165
    [13]
    CHENG L, CORD-RUWISCH R, SHAHIN M A. Influence of key environmental conditions on microbially induced cementation for soil stabilization[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(1): 04016083. doi: 10.1061/(ASCE)GT.1943-5606.0001586
    [14]
    DEJONG J T, FRITZGES M, B, NüSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392.
    [15]
    TAGLIAFERRI F, WALLER J, ANDÒ E, et al. Observing strain localisation processes in bio-cemented sand using X-ray imaging[J]. Granular Matter, 2011, 13(3): 247-250.
    [16]
    DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210.
    [17]
    ZHANG W, JU Y, ZONG Y, et al. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level[J]. Environmental Science & Technology, 2018, 52(16): 9266-9276.
    [18]
    WHITESIDES G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373.
    [19]
    WANG Y, SOGA K, DEJONG J T, et al. A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP)[J]. Géotechnique, 2019, 69(12): 1086-1094.
    [20]
    ROSSY T, NADELL C D, PERSAT A. Cellular advective-diffusion drives the emergence of bacterial surface colonization patterns and heterogeneity[J]. Nature Communications, 2019, 10(1): 2471-2480.
    [21]
    CHILTON T H, COLBURN A P. Pressure drop in packed tubes[J]. Industrial and Engineering Chemistry, 1931, 23(8): 913-919.
    [22]
    HAYNES W M. CRC Handbook of Chemistry and Physics[M]. Boca Raton: CRC Press, 2014.
    [23]
    GOSTING L J, AKELEY D F. A study of the diffusion of urea in water at 25-degrees with the Gouy interference method[J]. Journal of the American Chemical Society, 1952, 74(8): 2058-2060.
    [24]
    ZENG Y, CAO J, WANG Z, et al. Formation of amorphous calcium carbonate and its transformation mechanism to crystalline CaCO3 in laminar microfluidics[J]. Crystal Growth & Design, 2018, 18(3): 1710-1721.
    [25]
    MCDONALD J C, DUFFY D C, ANDERSON J R, et al. Fabrication of microfluidic systems in poly (dimethylsiloxane)[J]. Electrophoresis, 2000, 21(1): 27-40.
  • Cited by

    Periodical cited type(4)

    1. 徐宇冉,蒋函静. 考虑颗粒破碎的粗粒土一维压缩试验及数值模拟. 地下空间与工程学报. 2025(02): 452-460 .
    2. 闫世豪,迟世春,王晋伟,郭宇,周新杰. 考虑微裂纹随机分布的堆石颗粒准静态强度统计模型. 岩土力学. 2024(05): 1378-1387 .
    3. 曹志刚,申昆鹏,毛天学,肖力,庄峻淇. 淤泥质钻渣土碳化造粒方法及强度增长机理试验. 中国公路学报. 2024(06): 217-227 .
    4. 赵淑红,张鑫,袁溢文,侯磊涛,杨悦乾. 粉末状有机肥条施排肥器设计与试验. 农业机械学报. 2022(10): 98-107 .

    Other cited types(11)

Catalog

    Article views (643) PDF downloads (258) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return