• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
RAO Deng-yu, BAI Bing. Pore-scale SPH simulations of diffusive tortuosity in 3-D porous media[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 961-967. DOI: 10.11779/CJGE202005019
Citation: RAO Deng-yu, BAI Bing. Pore-scale SPH simulations of diffusive tortuosity in 3-D porous media[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 961-967. DOI: 10.11779/CJGE202005019

Pore-scale SPH simulations of diffusive tortuosity in 3-D porous media

More Information
  • Received Date: April 21, 2019
  • Available Online: December 07, 2022
  • The diffusive tortuosity is an important measurement of the diffusion rate of pollutants in porous media. Determining the diffusive tortuosity of porous media is of great significance for studying the migration of pollutants. Based on the Smooth particle hydrodynamics (SPH) method, the effective diffusion coefficient and the values of diffusive tortuosity can be obtained conveniently and accurately by simulating the diffusive experiment on 3-D reconstructed soil columns. The particle fluid code (PFC) and the Monte Carlo method are used to generate 3-D soil columns by stacking spherical particles and by filling random layered elements, respectively. The calculated results show that for the layered porous media, the angle between the layer and the concentration gradient direction has a significant influence on the diffusive tortuosity. The values of diffusive tortuosity generally grow with the increasing included angle. When the orientation of layers consists with the concentration gradient direction, the diffusive tortuosity is minimized and may even be less than the tortuosity value of the spherical particle packing media with the same porosity.
  • [1]
    SHACKELFORD C D. Laboratory diffusion testing for waste disposal—A review[J]. Journal of Contaminant Hydrology, 1991, 7(3): 177-217. doi: 10.1016/0169-7722(91)90028-Y
    [2]
    SHEN L, CHEN Z. Critical review of the impact of tortuosity on diffusion[J]. Chemical Engineering Science, 2007, 62(14): 3748-3755. doi: 10.1016/j.ces.2007.03.041
    [3]
    LI Z, DONG M. Experimental study of diffusive tortuosity of liquid-saturated consolidated porous media[J]. Industrial & Engineering Chemistry Research, 2010, 49(13): 6231-6237.
    [4]
    GHANBARIAN B, HUNT A G, EWING R P, et al. Tortuosity in porous media: a critical review[J]. Soil Science Society of America Journal, 2013, 77(5): 1461-1477. doi: 10.2136/sssaj2012.0435
    [5]
    BOUDREAU B P. The diffusive tortuosity of fine-grained unlithified sediments[J]. Geochimica et Cosmochimica Acta, 1996, 60(16): 3139-3142. doi: 10.1016/0016-7037(96)00158-5
    [6]
    SUN Z, TANG X, CHENG G. Numerical simulation for tortuosity of porous media[J]. Microporous & Mesoporous Materials, 2013, 173: 37-42.
    [7]
    SAOMOTO H, KATAGIRI J. Direct comparison of hydraulic tortuosity and electric tortuosity based on finite element analysis[J]. Theoretical and Applied Mechanics Letters, 2015, 5(5): 177-180. doi: 10.1016/j.taml.2015.07.001
    [8]
    YANG X, MEHMANI Y, PERKINS W A, et al. Intercomparison of 3D pore-scale flow and solute transport simulation methods[J]. Advances in Water Resources. 2016, 95: 176-189. doi: 10.1016/j.advwatres.2015.09.015
    [9]
    徐宗恒, 徐则民, 王志良. 格子Boltzmann方法在斜坡非饱和带土体大孔隙流研究中的应用[J]. 岩土工程学报, 2017, 39(1): 178-184. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701019.htm

    XU Zong-heng, XU Ze-min, WANG Zhi-liang. Application of lattice Boltzmann method in macropore flows in unsaturated zone soil of slopes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 178-184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701019.htm
    [10]
    LIU M B, LIU G R. Smoothed particle hydrodynamics (sph): an overview and recent developments[J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25-76. doi: 10.1007/s11831-010-9040-7
    [11]
    MONAGHAN J J. Smoothed particle hydrodynamics and its diverse applications[J]. Annual Review of Fluid Mechanics, 2012, 44: 323-346. doi: 10.1146/annurev-fluid-120710-101220
    [12]
    TARTAKOVSKY A M, TRASK N, PAN K, et al. Smoothed particle hydrodynamics and its applications for multiphase flow and reactive transport in porous media[J]. Computational Geosciences, 2016, 20(4): 807-834. doi: 10.1007/s10596-015-9468-9
    [13]
    ZHU Y, FOX P J. Simulation of pore-scale dispersion in periodic porous media using smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2002, 182: 622-645. doi: 10.1006/jcph.2002.7189
    [14]
    TARTAKOVSKY A M, MEAKIN P. Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics[J]. Advances in Water Resources, 2006, 29(10): 1464-1478. doi: 10.1016/j.advwatres.2005.11.014
    [15]
    RYAN E M, TARTAKOVSKY A M, AMON C. Pore-scale modeling of competitive adsorption in porous media[J]. Journal of Contaminant Hydrology, 2011, 120/121: 56-78. doi: 10.1016/j.jconhyd.2010.06.008
    [16]
    KUNZ P, ZARIKOS I M, KARADIMITRIOU N K, et al. Study of multi-phase flow in porous media: comparison of SPH simulations with micro-model experiments[J]. Transport in Porous Media, 2016, 114: 581-600. doi: 10.1007/s11242-015-0599-1
    [17]
    SIVANESAPILLAI R, STEEB H. Fluid interfaces during viscous-dominated primary drainage in 2D micromodels using pore-scale SPH simulations[J]. Geofluids, 2018: 1-13.
    [18]
    饶登宇, 白冰. 溶质运移中多孔介质弥散度影响因素的SPH模拟研究[J]. 水利学报, 2019, 50(7): 824-834. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201907005.htm

    RAO Deng-yu, BAI Bing. Study on the factors affecting dispersity of porous media by SPH simulation in solute transport[J]. Journal of Hydraulic Engineering, 2019, 50(7): 824-834. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201907005.htm
    [19]
    BAI Bing, RAO Deng-yu, CHANG Tao, et al. A nonlinear attachment-detachment model with adsorption hysteresis for suspension-colloidal transport in porous media[J]. Journal of Hydrology, 2019, 578: 124080. doi: 10.1016/j.jhydrol.2019.124080
    [20]
    BAI Bing, RAO Deng-yu, XU Tao, et al. SPH-FDM boundary for the analysis of thermal process in homogeneous media with a discontinuous interface[J]. International Journal of Heat and Mass Transfer, 2018, 117: 517-526.
    [21]
    CLEARY P W, MONAGHAN J J. Conduction modeling using smoothed particle hydrodynamics[J]. Journal of Computational Physica, 1999, 148: 227-264.
    [22]
    REBECCA A, SHUYU S. Computing and comparing effective properties for flow and transport in computer- generated porous media[J]. Geofluids, 2017: 1-24.
    [23]
    DAVARZANI H, MARCOUX M, COSTESEQUE P, et al. Experimental measurement of the effective diffusion and thermodiffusion coefficients for binary gas mixture in porous media[J]. Chemical Engineering Science, 2010, 65(18): 5092-5104.
  • Cited by

    Periodical cited type(2)

    1. 张小利,张四化,李明宇,刘涛,钱宇奔. 复合地基桩端位置变化对挡墙附加土压力的影响规律模型试验研究. 工程勘察. 2023(06): 7-12+29 .
    2. 刘华,刘志,张文龙,胡亚洲,刘人菩,谭茜元,谢楠,姜海波. 旋喷加固淤泥地层隧道荷载作用模式研究. 铁道标准设计. 2023(12): 143-149 .

    Other cited types(4)

Catalog

    Article views (436) PDF downloads (177) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return