• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Xing, KONG Liang, LI Xue-feng. Three-dimensional non-coaxial constitutive model for sand and its application in bearing capacity of foundation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 892-899. DOI: 10.11779/CJGE202005011
Citation: WANG Xing, KONG Liang, LI Xue-feng. Three-dimensional non-coaxial constitutive model for sand and its application in bearing capacity of foundation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 892-899. DOI: 10.11779/CJGE202005011

Three-dimensional non-coaxial constitutive model for sand and its application in bearing capacity of foundation

More Information
  • Received Date: June 07, 2019
  • Available Online: December 07, 2022
  • Due to the coaxial assumption that the direction of plastic strain rate is the same as that of stress, the non-coaxial behavior of sand under non-proportional loading conditions can not be captured by the conventional elastic-plastic model. In this study, firstly the cause of coaxial hypothesis contained in the traditional model is analyzed. Then, a non-coaxial model for sand is constructed by introducing the generalized non-coaxial plastic flow theory developed by Hashiguchi et al into the state-dependent dilatancy model for sand established by Li et al. The simulation of simple shear tests on Leighton-Buzzard sand shows that the non-coaxial model can describe the experimental results more reasonably. The corresponding finite element program is developed, the bearing capacity of sand foundation under different void ratios is analyzed by using the proposed model. The influence of non-coaxial parameters on the calculation results is discussed, and the predicted results demonstrate similar characteristics with those of simple shear test simulation on the whole.
  • [1]
    郑颖人, 孔亮. 岩土塑性力学[M]. 北京: 中国建筑工业出版社, 2010.

    ZHENG Ying-ren, KONG Liang. Geotechnical Plastic Mechanics[M]. Beijing: China Architecture and Building Press, 2010. (in Chinese)
    [2]
    ARTHUR J R F, RODRIGUEZ DEL C J I, DUNSTAN T. Principal stress rotation: a missing parameter[J]. Journal of the Geotechnical Engineering Division, 1980, 106(4): 419-433. doi: 10.1061/AJGEB6.0000946
    [3]
    ROSCOE K H. The influence of strains in soil mechanics[J]. Géotechnique, 1970, 20(2): 129-170. doi: 10.1680/geot.1970.20.2.129
    [4]
    ODA M, KONISHI J. Microscopic deformation mechanism of granular material in simple shear[J]. Soils and Foundations, 1974, 14(4): 25-38. doi: 10.3208/sandf1972.14.4_25
    [5]
    MIURA K, MIURA S, TOKI S. Deformation behaviour of sand under principal axes rotation[J]. Soils and Foundations, 1986, 26(1): 36-52. doi: 10.3208/sandf1972.26.36
    [6]
    ISHIHARA K, TOWHATA I. Sand response to cyclic rotation of principal stress direction as induced by wave loads[J]. Soils and Foundations, 1983, 23: 11-16. doi: 10.3208/sandf1972.23.4_11
    [7]
    GUTIERREZ M, ISHIHARA K, TOWHATA I. Flow theory for sand during rotation of principal stress direction[J]. Soils and Foundations, 1991, 31(4): 121-132. doi: 10.3208/sandf1972.31.4_121
    [8]
    GUTIERREZ M, ISHIHARA K. Non-coaxiality and energy dissipation in granular materials[J]. Soils and Foundations, 2000, 40(2): 49-59. doi: 10.3208/sandf.40.2_49
    [9]
    LI X, YANG D, YU H S. Macro deformation and micro structure of 3D granular assemblies subjected to rotation of principal stress axes[J]. Granular Matter, 2016, 18(3): 53. doi: 10.1007/s10035-016-0632-2
    [10]
    RUDNICKI J W, RICE J R. Conditions for the localization of deformation in pressure-sensitive dilatant materials[J]. Journal of the Mechanics and Physics of Solids, 1975, 23(6): 371-394. doi: 10.1016/0022-5096(75)90001-0
    [11]
    YANG Y, YU H S. Numerical aspects of non-coaxial model implementations[J]. Computers and Geotechnics, 2010, 37(1/2): 93-102.
    [12]
    YANG Y, YU H S. Application of a non-coaxial soil model in shallow foundations[J]. Geomechanics and Geoengineering: An International Journal, 2006, 1(2): 139-150. doi: 10.1080/17486020600777101
    [13]
    YANG Y, YU H S. A non-coaxial critical state soil model and its application to simple shear simulations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(13): 1369-1390. doi: 10.1002/nag.531
    [14]
    罗强, 郑伟花. 密砂单剪试验的非共轴本构数值分析[J]. 长江科学院院报, 2015, 32(5): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201505020.htm

    LUO Qiang, ZHENG Wei-hua. Numerical analysis of simple shear test on dense sand with non-coaxial constitutive model[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(5): 89-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201505020.htm
    [15]
    钱建固, 黄茂松, 杨峻. 真三维应力状态下土体应变局部化的非共轴[J]. 岩土工程学报, 2006, 28(4): 511-515. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200604015.htm

    QIAN Jian-gu, HUANG Mao-song, YANG Jun. Effect of non-coaxial plasticity on onset strain localization in soils under 3D stress condition[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 511-515. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200604015.htm
    [16]
    李学丰, 黄茂松, 钱建固. 宏–细观结合的砂土单剪试验非共轴特性分析[J]. 岩土力学, 2013, 34(12): 3418-3424. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312012.htm

    LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Analysis of non-coaxial characters of sand for simple shear test with the method of macro-meso-incorporation[J]. Rock and Soil Mechanics, 2013, 34(12): 3418-3424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312012.htm
    [17]
    陈洲泉, 黄茂松. 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报, 2018, 40(2): 244-251. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802005.htm

    CHEN Zhou-quan, HUANG Mao-song. Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 244-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802005.htm
    [18]
    陈洲泉, 黄茂松. 基于状态相关本构模型的砂土非共轴特性模拟[J]. 岩土力学, 2017, 38(7): 1960-1966. doi: 10.16285/j.rsm.2017.07.015

    CHEN Zhou-quan, HUANG Mao-song. Simulation of non-coaxial characteristics of sandy soil based on state-dependent constitutive model[J]. Rock and soil mechanics, 2017, 38(7): 1960-1966. (in Chinese) doi: 10.16285/j.rsm.2017.07.015
    [19]
    DAFALIAS Y F, PAPADIMITRIOU A G, LI X S. Sand plasticity model accounting for inherent fabric anisotropy[J]. Journal of Engineering Mechanics, 2004, 130(11): 1319-1333. doi: 10.1061/(ASCE)0733-9399(2004)130:11(1319)
    [20]
    HASHIGUCHI K. The tangential plasticity[J]. Metals and Materials, 1998, 4(4): 652-656. doi: 10.1007/BF03026374
    [21]
    HASHIGUCHI K, TSUTSUMI S. Elastoplastic constitutive equation with tangential stress rate effect[J]. International Journal of Plasticity, 2001, 17(1): 117-145. doi: 10.1016/S0749-6419(00)00021-8
    [22]
    HASHIGUCHI K, TSUTSUMI S. Shear band formation analysis in soils by the subloading surface model with tangential stress rate effect[J]. International Journal of Plasticity, 2003, 19(10): 1651-1677. doi: 10.1016/S0749-6419(02)00113-4
    [23]
    GAO Z W, ZHAO J D. Strain localization and fabric evolution in sand[J]. International Journal of Solids and Structures, 2013, 50(22/23): 3634-3648.
    [24]
    TIAN Y, YAO Y P. Constitutive modeling of principal stress rotation by considering inherent and induced anisotropy of soils[J]. Acta Geotechnica, 2018, 13(6): 1299-1311.
    [25]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
    [26]
    姚仰平, 路德春, 周安楠. 岩土类材料的变换应力空间及其应用[J]. 岩土工程学报, 2005, 27(1): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200501002.htm

    YAO Yang-ping, LU De-chun, ZHOU An-nan. Transformed stress space for geomaterials and its application[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200501002.htm
    [27]
    姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193-217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm

    YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm
    [28]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112.
    [29]
    LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868-880.
    [30]
    DAFALIAS Y F. An anisotropic critical state soil plasticity model[J]. Mechanics Research Communications, 1986, 13(6): 341-347.
    [31]
    COLE E R L. The Behavior of Soils in the Simple Shear Apparatus[D]. Cambridge: Cambridge University, 1967.
    [32]
    蔡正银, 李相菘. 砂土的剪胀理论及其本构模型的发展[J]. 岩土工程学报, 2007, 29(8): 1122-1128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200708004.htm

    CAI Zheng-yin, LI Xiang-song. Development of dilatancy theory and constitutive model of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1122-1128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200708004.htm

Catalog

    Article views (330) PDF downloads (204) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return