Citation: | WANG Xing, KONG Liang, LI Xue-feng. Three-dimensional non-coaxial constitutive model for sand and its application in bearing capacity of foundation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 892-899. DOI: 10.11779/CJGE202005011 |
[1] |
郑颖人, 孔亮. 岩土塑性力学[M]. 北京: 中国建筑工业出版社, 2010.
ZHENG Ying-ren, KONG Liang. Geotechnical Plastic Mechanics[M]. Beijing: China Architecture and Building Press, 2010. (in Chinese)
|
[2] |
ARTHUR J R F, RODRIGUEZ DEL C J I, DUNSTAN T. Principal stress rotation: a missing parameter[J]. Journal of the Geotechnical Engineering Division, 1980, 106(4): 419-433. doi: 10.1061/AJGEB6.0000946
|
[3] |
ROSCOE K H. The influence of strains in soil mechanics[J]. Géotechnique, 1970, 20(2): 129-170. doi: 10.1680/geot.1970.20.2.129
|
[4] |
ODA M, KONISHI J. Microscopic deformation mechanism of granular material in simple shear[J]. Soils and Foundations, 1974, 14(4): 25-38. doi: 10.3208/sandf1972.14.4_25
|
[5] |
MIURA K, MIURA S, TOKI S. Deformation behaviour of sand under principal axes rotation[J]. Soils and Foundations, 1986, 26(1): 36-52. doi: 10.3208/sandf1972.26.36
|
[6] |
ISHIHARA K, TOWHATA I. Sand response to cyclic rotation of principal stress direction as induced by wave loads[J]. Soils and Foundations, 1983, 23: 11-16. doi: 10.3208/sandf1972.23.4_11
|
[7] |
GUTIERREZ M, ISHIHARA K, TOWHATA I. Flow theory for sand during rotation of principal stress direction[J]. Soils and Foundations, 1991, 31(4): 121-132. doi: 10.3208/sandf1972.31.4_121
|
[8] |
GUTIERREZ M, ISHIHARA K. Non-coaxiality and energy dissipation in granular materials[J]. Soils and Foundations, 2000, 40(2): 49-59. doi: 10.3208/sandf.40.2_49
|
[9] |
LI X, YANG D, YU H S. Macro deformation and micro structure of 3D granular assemblies subjected to rotation of principal stress axes[J]. Granular Matter, 2016, 18(3): 53. doi: 10.1007/s10035-016-0632-2
|
[10] |
RUDNICKI J W, RICE J R. Conditions for the localization of deformation in pressure-sensitive dilatant materials[J]. Journal of the Mechanics and Physics of Solids, 1975, 23(6): 371-394. doi: 10.1016/0022-5096(75)90001-0
|
[11] |
YANG Y, YU H S. Numerical aspects of non-coaxial model implementations[J]. Computers and Geotechnics, 2010, 37(1/2): 93-102.
|
[12] |
YANG Y, YU H S. Application of a non-coaxial soil model in shallow foundations[J]. Geomechanics and Geoengineering: An International Journal, 2006, 1(2): 139-150. doi: 10.1080/17486020600777101
|
[13] |
YANG Y, YU H S. A non-coaxial critical state soil model and its application to simple shear simulations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(13): 1369-1390. doi: 10.1002/nag.531
|
[14] |
罗强, 郑伟花. 密砂单剪试验的非共轴本构数值分析[J]. 长江科学院院报, 2015, 32(5): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201505020.htm
LUO Qiang, ZHENG Wei-hua. Numerical analysis of simple shear test on dense sand with non-coaxial constitutive model[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(5): 89-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201505020.htm
|
[15] |
钱建固, 黄茂松, 杨峻. 真三维应力状态下土体应变局部化的非共轴[J]. 岩土工程学报, 2006, 28(4): 511-515. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200604015.htm
QIAN Jian-gu, HUANG Mao-song, YANG Jun. Effect of non-coaxial plasticity on onset strain localization in soils under 3D stress condition[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 511-515. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200604015.htm
|
[16] |
李学丰, 黄茂松, 钱建固. 宏–细观结合的砂土单剪试验非共轴特性分析[J]. 岩土力学, 2013, 34(12): 3418-3424. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312012.htm
LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Analysis of non-coaxial characters of sand for simple shear test with the method of macro-meso-incorporation[J]. Rock and Soil Mechanics, 2013, 34(12): 3418-3424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312012.htm
|
[17] |
陈洲泉, 黄茂松. 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报, 2018, 40(2): 244-251. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802005.htm
CHEN Zhou-quan, HUANG Mao-song. Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 244-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802005.htm
|
[18] |
陈洲泉, 黄茂松. 基于状态相关本构模型的砂土非共轴特性模拟[J]. 岩土力学, 2017, 38(7): 1960-1966. doi: 10.16285/j.rsm.2017.07.015
CHEN Zhou-quan, HUANG Mao-song. Simulation of non-coaxial characteristics of sandy soil based on state-dependent constitutive model[J]. Rock and soil mechanics, 2017, 38(7): 1960-1966. (in Chinese) doi: 10.16285/j.rsm.2017.07.015
|
[19] |
DAFALIAS Y F, PAPADIMITRIOU A G, LI X S. Sand plasticity model accounting for inherent fabric anisotropy[J]. Journal of Engineering Mechanics, 2004, 130(11): 1319-1333. doi: 10.1061/(ASCE)0733-9399(2004)130:11(1319)
|
[20] |
HASHIGUCHI K. The tangential plasticity[J]. Metals and Materials, 1998, 4(4): 652-656. doi: 10.1007/BF03026374
|
[21] |
HASHIGUCHI K, TSUTSUMI S. Elastoplastic constitutive equation with tangential stress rate effect[J]. International Journal of Plasticity, 2001, 17(1): 117-145. doi: 10.1016/S0749-6419(00)00021-8
|
[22] |
HASHIGUCHI K, TSUTSUMI S. Shear band formation analysis in soils by the subloading surface model with tangential stress rate effect[J]. International Journal of Plasticity, 2003, 19(10): 1651-1677. doi: 10.1016/S0749-6419(02)00113-4
|
[23] |
GAO Z W, ZHAO J D. Strain localization and fabric evolution in sand[J]. International Journal of Solids and Structures, 2013, 50(22/23): 3634-3648.
|
[24] |
TIAN Y, YAO Y P. Constitutive modeling of principal stress rotation by considering inherent and induced anisotropy of soils[J]. Acta Geotechnica, 2018, 13(6): 1299-1311.
|
[25] |
LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
|
[26] |
姚仰平, 路德春, 周安楠. 岩土类材料的变换应力空间及其应用[J]. 岩土工程学报, 2005, 27(1): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200501002.htm
YAO Yang-ping, LU De-chun, ZHOU An-nan. Transformed stress space for geomaterials and its application[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200501002.htm
|
[27] |
姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193-217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm
YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm
|
[28] |
BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112.
|
[29] |
LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868-880.
|
[30] |
DAFALIAS Y F. An anisotropic critical state soil plasticity model[J]. Mechanics Research Communications, 1986, 13(6): 341-347.
|
[31] |
COLE E R L. The Behavior of Soils in the Simple Shear Apparatus[D]. Cambridge: Cambridge University, 1967.
|
[32] |
蔡正银, 李相菘. 砂土的剪胀理论及其本构模型的发展[J]. 岩土工程学报, 2007, 29(8): 1122-1128. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200708004.htm
CAI Zheng-yin, LI Xiang-song. Development of dilatancy theory and constitutive model of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1122-1128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200708004.htm
|