• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YU Zhi-fa, YU Chang-yi, LIU Feng, YAN Shu-wang. Application of numerical manifold method in crack propagation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 751-757. DOI: 10.11779/CJGE202004019
Citation: YU Zhi-fa, YU Chang-yi, LIU Feng, YAN Shu-wang. Application of numerical manifold method in crack propagation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 751-757. DOI: 10.11779/CJGE202004019

Application of numerical manifold method in crack propagation

More Information
  • Received Date: July 14, 2019
  • Available Online: December 07, 2022
  • In order to solve the problem that the traditional fracture criterion is difficult to simulate the mixed multi-crack propagation, based on the existing numerical manifold method program, the existing crack propagation criterion is improved so that the numerical manifold method can be adapted to the simulation of various types of crack propagation. Based on the Mohr-Coulomb criterion and the maximum circumferential stress criterion, the crack propagation direction is determined by combining the two criteria. The corresponding program developed by C language is used to calculate the half disk tensile tests and four-point bilateral shear tests. The crack propagation paths of the numerical simulation and test results are consistent, and the crack can pass through the interior of manifold element. Subsequently, the cracking problem of gravity dams is simulated, and it is found that the cracking of gravity dams is mainly tensile failure, and the crack propagation path is similar to the finite element results. Finally, by simulating the slope slip problem, the calculated results are highly consistent with those by DEM and other methods. The results of this study verify the effectiveness of the proposed strength criterion in simulating various types of crack propagation problems and lay a foundation for NMM to simulate practical engineering problems.
  • [1]
    ZHANG G X, SUGIURA Y, KOZO S. Failure simulation of foundation by manifold method and comparison with experiment[J]. Journal of Applied Mechanics, 1998(1): 427-436. http://www.onacademic.com/detail/journal_1000040291858710_fed7.html
    [2]
    陈远强, 杨永涛, 郑宏, 等. 饱和–非饱和渗流的数值流形法研究与应用[J]. 岩土工程学报, 2019, 41(2): 149-158. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902014.htm

    CHEN Yuan-qiang, YANG Yong-tao, ZHENG Hong, et al. Saturated-unsaturated seepage by numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 149-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902014.htm
    [3]
    MA G, AN X, HE L E I. The numerical manifold method: a review[J]. International Journal of Computational Methods, 2010, 7(1): 1-32. doi: 10.1142/S0219876210002040
    [4]
    徐栋栋, 郑宏, 杨永涛. 线性无关高阶数值流形法[J]. 岩土工程学报, 2014, 36(3): 482-488. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403015.htm

    XU Dong-dong, ZHENG Hong, YANG Yong-tao. Linearly independent higher-order numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 482-488. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403015.htm
    [5]
    李伟, 郑宏. 基于数值流形法的渗流问题边界处理新方法[J]. 岩土工程学报, 2017, 39(10): 1867-1873. doi: 10.11779/CJGE201710015

    LI Wei, ZHENG Hong. New boundary treatment for seepage flow problem based on numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1867-1873. (in Chinese) doi: 10.11779/CJGE201710015
    [6]
    NING Y J, AN X M, MA G W. Footwall slope stability analysis with the numerical manifold method[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6): 964-975. doi: 10.1016/j.ijrmms.2011.06.011
    [7]
    WU Z, WONG L N Y. Frictional crack initiation and propagation analysis using the numerical manifold method[J]. Computers and Geotechnics, 2012, 39: 38-53. doi: 10.1016/j.compgeo.2011.08.011
    [8]
    TI K S, HUAT B B, NOORZAEI J, et al. A review of basic soil constitutive models for geotechnical application[J]. Electronic Journal of Geotechnical Engineering, 2009, 14: 1-18.
    [9]
    HACKSTON A, RUTTER E. The Mohr–Coulomb criterion for intact rock strength and friction – a re-evaluation and consideration of failure under polyaxial stresses[J]. Solid Earth, 2016, 7(2): 493-508. doi: 10.5194/se-7-493-2016
    [10]
    AN X, NING Y, MA G, et al. Modeling progressive failures in rock slopes with non-persistent joints using the numerical manifold method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(7): 679-701. doi: 10.1002/nag.2226
    [11]
    XU Y, DAI F, XU N W, et al. Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split hopkinson pressure bar testing[J]. Rock Mechanics and Rock Engineering, 2015, 49(3): 731-745.
    [12]
    AYATOLLAHI M R, ALIHA M R M, HASSANI M M. Mixed mode brittle fracture in PMMA—An experimental study using SCB specimens[J]. Materials Science and Engineering: A, 2006, 417(1/2): 348-356.
    [13]
    XIE Y, CAO P, JIN J, et al. Mixed mode fracture analysis of semi-circular bend (SCB) specimen: A numerical study based on extended finite element method[J]. Computers and Geotechnics, 2017, 82: 157-172. doi: 10.1016/j.compgeo.2016.10.012
    [14]
    BERGARA A, DORADO J I, MART N-MEIZOSO A, et al. Fatigue crack propagation in complex stress fields: experiments and numerical simulations using the extended finite element method (Xfem)[J]. International Journal of Fatigue, 2017, 103: 112-121. doi: 10.1016/j.ijfatigue.2017.05.026
    [15]
    LANG C, MAKHIJA D, DOOSTAN A, et al. A simple and efficient preconditioning scheme for heaviside enriched XFEM[J]. Computational Mechanics, 2014, 54(5): 1357-1374. doi: 10.1007/s00466-014-1063-8
    [16]
    BOCCA P, CARPINTERI A, VALENTE S. Size effects in the mixed mode crack propagation: softening and snap-back analysis[J]. Engineering Fracture Mechanics, 1990, 35(1): 159-170.
    [17]
    GEERS M G D, BORST R D, PEERLINGS R H J. Damage and crack modeling in single-edge and double-edge notched concrete beams[J]. Engineering Fracture Mechanics, 2000, 65(2/3): 247-261.
    [18]
    ZHU W C, TANG C A. Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model[J]. Construction & Building Materials, 2002, 16(8): 453-463.
    [19]
    OLIVER J, HUESPE A E, SAMANIEGO E, et al. Continuum approach to the numerical simulation of material failure in concrete[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2004, 28: 609-632.
    [20]
    DIAS I F, OLIVER J, LEMOS J V, et al. Modeling tensile crack propagation in concrete gravity dams via crack-path-field and strain injection techniques[J]. Engineering Fracture Mechanics, 2016, 154: 288-310. doi: 10.1016/j.engfracmech.2015.12.028
    [21]
    ROTH S-N, L GER P, SOULA MANI A. A combined XFEM-damage mechanics approach for concrete crack propagation[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 923-955.
    [22]
    CAMONES L A M, VARGAS E D A, DE FIGUEIREDO R P, et al. Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism[J]. Engineering Geology, 2013, 153: 80-94.
    [23]
    LI T, PENG Y, ZHU Z, et al. Discrete element method simulations of the inter-particle contact parameters for the mono-sized iron ore particles[J]. Materials, 2017, 10(5): 520.
    [24]
    WONG L N Y, WU Z. Application of the numerical manifold method to model progressive failure in rock slopes[J]. Engineering Fracture Mechanics, 2014, 119: 1-20.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return