• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Yong-fu. Calculation of erosion mass of bentonite based on fractal model for colloids[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 731-736. DOI: 10.11779/CJGE202004016
Citation: XU Yong-fu. Calculation of erosion mass of bentonite based on fractal model for colloids[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 731-736. DOI: 10.11779/CJGE202004016

Calculation of erosion mass of bentonite based on fractal model for colloids

More Information
  • Received Date: May 19, 2019
  • Available Online: December 07, 2022
  • The water inflow into the deposition holes and tunnels in a repository will mainly take place through fractures in the rock and will lead to that the buffer and backfill will be wetted and eroded. If the counter pressure and strength of the buffer or backfill are insufficiently high, piping erosion will take place. An erosion model to estimate the erosion mass (ms) of bentonite buffer in saline solution for a certain water inflow rate during a certain time based on the fractal model for bentonite colloids is proposed as ms=βVwα, in terms of a power law, Vw is the accumulated volume of water flow. The exponent parameter (α) is related to the fractal dimension (D) of bentonite colloids as α=D/(6D). The relationship between the erosion mass (ms) and the accumulated volume of water flow (Vw) is verified by the experiments of MX-80 bentonite piping erosion in NaCl solutions by Börgesson et al and Suzuki et al. The fractal dimension (D) of bentonite colloids is calculated according to the small-angle X-ray scattering (SAXS) of MX-80 bentonite by Svensson & Hansen (2013).
  • [1]
    XU Y F, JIANG H, CHU F F, et al. Fractal model for surface erosion of cohesive sediments[J]. Fractals, 2014, 22(3): 1440006. doi: 10.1142/S0218348X14400064
    [2]
    XU Y F. Peak shear strength of compacted GMZ bentonites in saline solution[J]. Eng Geol, 2019, 251: 93-99. doi: 10.1016/j.enggeo.2019.02.009
    [3]
    徐永福, 孙德安, 董平. 膨润土及其与砂混合物的膨胀试验[J]. 岩石力学与工程学报, 2003, 22(3): 451-451. doi: 10.3321/j.issn:1000-6915.2003.03.022

    XU Yong-fu, SUN De-an, DONG Ping. Swelling tests on bentonite and sand-bentonite mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(3): 451-451. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.03.022
    [4]
    叶为民, 黄伟, 陈宝, 等. 双电层理论与高庙子膨润土的体变特征[J]. 岩土力学, 2009, 30(7): 1899-1904. doi: 10.3969/j.issn.1000-7598.2009.07.004

    YE Wei-min, HUANG Wei, CHEN Bao, et al. Diffuse double layer theory and volume change behavior of densely compacted Gaomiaozi bentonite[J]. Rock and Soil Mechanics, 2009, 30(7): 1899-1904. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.07.004
    [5]
    秦冰, 陈正汉, 刘月妙, 等. 高庙子膨润土的胀缩变形特性及其影响因素[J]. 岩土工程学报, 2008, 30(7): 1005-1010. doi: 10.3321/j.issn:1000-4548.2008.07.010

    QIN Bing, CHEN Zheng-han, LIU Yue-miao, et al. Swelling-shrinkage behaviour of Gaomiaozi bentonite[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 1005-1010. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.07.010
    [6]
    孙德安, 张龙. 盐溶液饱和高庙子膨润土膨胀特性及预测[J]. 岩土力学, 2013, 34(10): 2790-2795. doi: 10.16285/j.rsm.2013.10.035

    SUN De-an, ZHANG Long. Swelling characteristics of Gaomiaozi bentonite saturated by salt solution and their prediction[J]. Rock and Soil Mechanics, 2013, 34(10): 2790-2795. (in Chinese) doi: 10.16285/j.rsm.2013.10.035
    [7]
    张虎元, 贾灵艳, 周浪. 高效废物处置库的混合型缓冲回填材料压缩特性研究[J]. 岩土力学, 2013, 34(6): 1546-1552. doi: 10.16285/j.rsm.2013.06.037

    ZHANG Hu-yuan, JIA Ling-yan, ZHOU Lang. Compression behaviors of compacted bentonite-sand mixtures as buffer material for HLW disposal[J]. Rock and Soil Mechanics, 2013, 34(6): 1546-1552. (in Chinese) doi: 10.16285/j.rsm.2013.06.037
    [8]
    BAIK M H, CHO W J, HAHN P S. Erosion of bentonite particles at the interface of a compacted bentonite and a fractured granite[J]. Eng Geol, 2007, 91: 229-239. doi: 10.1016/j.enggeo.2007.02.002
    [9]
    XU Y F. Approach to the erosion threshold of cohesive sediments[J]. Ocean Engineering, 2019, 172: 183-190. doi: 10.1016/j.oceaneng.2018.11.036
    [10]
    XU Y F, GAO Z R, CHU F F, et al. Fractal model for erosion mass of bentonite colloids[J]. Environ Earth Sci, 2016, 75: 1330. doi: 10.1007/s12665-016-6101-8
    [11]
    XU Y F, LI X Y. Fractal approach to erosion threshold of bentonites[J]. Fractals, 2018, 26(2): 1840012. doi: 10.1142/S0218348X18400121
    [12]
    BIRGERSSON M, BÖRGESSON L, HEDSTRÖM K, et al. Bentinite Erosion[R]. Stockholm, SKB TR-09-34, Swedish Nuclear Fuel and Waste Management Co., 2009.
    [13]
    SKB. Detailed Program for Research and Development 1999-2004[R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co., 1998.
    [14]
    POSIVA Oy. TKS-2009 Nuclear Waste Management at Olkiluoto and Loviisa Power Plants: Review of Current Status and Future Plans for 2010-2012[R]. 2010.
    [15]
    徐永福. 高放废物地质处置库中膨润土的侵蚀机理和模型研究综述[J]. 地球科学进展, 2016, 32(10): 1050-1061. doi: 10.11867/j.issn.1001-8166.2017.10.1050

    XU Yong-fu. Mechanisms and models for bentonite erosion used for geologic disposal of high level radioactive waste: a review[J]. Advances in Earth Science, 2017, 32(10): 1050-1061. (in Chinese) doi: 10.11867/j.issn.1001-8166.2017.10.1050
    [16]
    BÖRGESSON L, SANDÉN T. Piping and Erosion in Buffer and Backfill Materials[R]. Clay Technology AB, SKB R-06-80, Svensk Kärnbränslehantering AB, 2006.
    [17]
    JANSSON M. Laboratory Studies of Bentonite Erosion[R]. Report, Nuclear Chemistry, Royal Institute of Technology, KTH, Stockholm, 2009.
    [18]
    SANE P, LAURILA T, OLIN M, et al. Current Status of Mechanical Erosion Studies of Bentonite Buffer[R]. POSIVA 2012-45, 2012.
    [19]
    SUZUKI K, ASANO H, YAGAG R. Experimental investigations of piping phenomena in bentonite-based buffer materials for an HLW repository[J]. Clay Miner, 2013, 48: 363-382. doi: 10.1180/claymin.2013.048.2.15
    [20]
    XU Y F, JIANG H, CHU F F, et al. Fractal model for surface erosion of cohesive sediments[J]. Fractals, 2014, 22(3): 1440006. doi: 10.1142/S0218348X14400064
    [21]
    SCHAEFER D W, MARTIN J E, WILTZIUS P, et al. Fractal geometry of colloidal aggregates[J]. Phys Rev Lett, 1984, 52(26): 2371-2375. doi: 10.1103/PhysRevLett.52.2371
    [22]
    FRANKS G V, ZHOU Y, YAN Y-D, et al. Effect of aggregate size on sediment bed rheological properties[J]. Phys Chem Chem Phys, 2004, 6: 4490-4498. doi: 10.1039/b402580f
    [23]
    XU Y F, XIA X H. Fractal model for virgin compression of pure clays[J]. Mech Res Commun, 2006, 33: 206-216. doi: 10.1016/j.mechrescom.2005.06.008
    [24]
    AUBERT C, CANNELL D S. Restructuring of colloidal silica aggregates[J]. Phys Rev Lett, 1986, 56: 738. doi: 10.1103/PhysRevLett.56.738
    [25]
    SINKÓ K, TORMA V, KOVÁCS A. SAXS investigation of porous nanostructures[J]. J of Non-Crystalline Solids, 2008, 354: 5466-5474. doi: 10.1016/j.jnoncrysol.2008.08.021
    [26]
    WOIGNIER T, PHALIPPOU J, VACHER R, et al. Different kinds of fractal structures in silica aerogels[J]. J of Non-Crystalline Solids, 1990, 121: 198-201. doi: 10.1016/0022-3093(90)90131-5
    [27]
    COURTENS E, VACHER R. Porous silica[M]//THORPE M F, MITKOVA M I. Amorphous Insulators and Semiconductors, NATO ASI Series, 3 High Technology, Kluwer Academic Publishers, 1997: 255-288.
    [28]
    ZHOU Y, FRANKS G V. Flocculation mechanism induced by cationic polymers investigated by light scattering[J]. Langmuir, 2006, 22: 6775-6786. doi: 10.1021/la060281+
    [29]
    XI Y, CHEN J J, XU Y F, et al. Yield stress of fractal aggregates[J]. Fractals, 2015, 23(3): 1550028. doi: 10.1142/S0218348X15500280
    [30]
    MEAKIN P. Fractal aggregates[J]. Advances in Colloid and Interface Sci, 1988, 28: 249-331.
    [31]
    KRONE R B. A Study of Rheologic Properties of Estuarial Sediments[R]. U.S. Army Corps of Engineers Committee on Tidal Hydraulics Technical Bulletin No. 7, Vicksburg, MS, 1963.
    [32]
    SVENSSON P D, HANSEN S. Combined salt and temperature impact on monmorillonite hydration[J]. Clays and Clay Minerals, 2013, 61(4): 328-341. doi: 10.1346/CCMN.2013.0610412
    [33]
    KLIMPEL R C, HOGG R. Evaluation of floc structures[J]. Colloids and Surf, 1991, 55: 279-288. doi: 10.1016/0166-6622(91)80099-A
    [34]
    HUANG H. Porosity-size relationship of drilling mud flocs: fractal structure[J]. Clays and Clay Minerals, 1993, 41: 373-379. doi: 10.1346/CCMN.1993.0410314
    [35]
    SCHAEFER D W, MARTIN J E, WILTZIUS P, et al. Fractal geometry of colloidal aggregates[J]. Phys Rev Lett, 1984, 52: 2371-2374. doi: 10.1103/PhysRevLett.52.2371
  • Cited by

    Periodical cited type(22)

    1. 石延杰,王健,陈青山,张浦阳,任建宇. 海上风电倾斜螺旋群桩基础适用性分析. 港口航道与近海工程. 2024(01): 44-49 .
    2. 韦芳芳,包淑珉,邵盛,王永泉,孔纲强. 砂土中螺旋桩在斜拉荷载作用下的承载性能. 河海大学学报(自然科学版). 2024(02): 77-83 .
    3. 杨伟华,胡雪扬,张浦阳,甘毅,陈青山. 砂土中海上倾斜螺旋群桩基础承载特性研究. 南方能源建设. 2024(02): 82-92 .
    4. 胡伟,李砥柱,林志,冯世进,黄勇祥. 双锚片螺旋锚倾斜拉拔承载特性与承载力计算方法研究. 岩土力学. 2024(06): 1661-1674+1685 .
    5. 李建彪,邬叶飞,马思伟,孙昌利,邵康. 土体侧移作用下螺旋钢桩被动承载机理分析. 路基工程. 2024(05): 32-38 .
    6. 邬叶飞,高平,高丽峰,王华志,邵康. 砂土地层中多叶片螺旋钢桩压缩承载特性研究. 路基工程. 2024(05): 64-70 .
    7. 李幸周,杨振国,黄炎,余东起. 螺旋锚单锚基础在500 kV输电线路中的应用探析. 电力勘测设计. 2024(S2): 14-21 .
    8. 刘利民,王治伟,高明德,叶永明,阎石,张曰果. 水平单调加载下新型组合式螺旋锚复合地基基本力学性能. 地震工程与工程振动. 2023(02): 239-246 .
    9. 胡伟,王辉,姚琛,郝冬雪,史旦达. 砂土中水平矩形锚板竖向拉拔承载全域内三维统一力学模型与承载力计算方法研究. 岩土力学. 2023(06): 1811-1825 .
    10. 周为华,高明德,叶永明,杨立. 砂土地基增强套管螺旋锚组合基础试验研究. 建筑结构. 2023(S1): 2578-2582 .
    11. 高明德,庾思黎,叶永明,周为华. 大小螺旋锚组合型基础现场试验研究. 工业建筑. 2023(S1): 539-542 .
    12. 周震. 锚桩竖向荷载抗拔模型试验研究. 土工基础. 2022(01): 102-105 .
    13. 黄勇祥,丁士君,袁小超,翟国光,丁民涛. 青藏高原碎石土地基混凝土承台式螺旋锚基础原位载荷试验及承载机制分析. 建筑结构. 2022(04): 148-152+105 .
    14. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 .
    15. 胡伟,杨瑶,刘顺凯,林志,吴秋红,黄勇祥. 光伏支架螺旋桩斜向拉拔承载特性试验研究. 太阳能学报. 2022(12): 50-61 .
    16. 马建军,王满,刘家宇,聂梦强,王连华. 基于Winkler地基理论的横向受荷长桩非线性动力响应模型试验. 振动与冲击. 2021(01): 39-44+67 .
    17. 韦芳芳,华子伟,邵盛,于玮伟,朱俞. 砂土中倾斜螺旋桩水平承载性能有限元分析. 河北工程大学学报(自然科学版). 2021(01): 13-19 .
    18. 韦芳芳,邵盛,陈道申,徐庆鹏,邹本为,孔纲强. 黏土中倾斜螺旋桩的水平承载性能数值模拟及理论研究. 东南大学学报(自然科学版). 2021(03): 463-472 .
    19. 刘志鹏,孔纲强,文磊,王志华,秦红玉. 砂土地基中倾斜螺旋桩群桩上拔与水平承载特性模型试验. 岩土力学. 2021(07): 1944-1950 .
    20. 崔建国,田野,刘君巍,侯绪研,崔江磊,杨飞,王晶,关祥毅. 月壤临界尺度颗粒运移特性对钻采阻力影响研究. 岩土工程学报. 2021(09): 1715-1723 . 本站查看
    21. 林志,胡伟,赵璞,陈秋南,贺建清,陈洁,史旦达. 砂土中平板圆锚倾斜拉拔承载特性模型试验研究. 岩土力学. 2021(11): 3059-3068+3168 .
    22. 吴立晴,邵国栋,盛寒柯,王文明. 螺旋锚在软黏土中上拔承载力计算与数值模拟分析. 低温建筑技术. 2021(10): 120-124 .

    Other cited types(15)

Catalog

    Article views (293) PDF downloads (147) Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return