• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Min-min, CAI Zheng-yin, XIAO Zhao-ran, XU Guang-ming. Failure modes and bearing capacity of composite bucket foundation breakwater in clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 642-649. DOI: 10.11779/CJGE202004006
Citation: JIANG Min-min, CAI Zheng-yin, XIAO Zhao-ran, XU Guang-ming. Failure modes and bearing capacity of composite bucket foundation breakwater in clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 642-649. DOI: 10.11779/CJGE202004006

Failure modes and bearing capacity of composite bucket foundation breakwater in clay

More Information
  • Received Date: August 13, 2019
  • Available Online: December 07, 2022
  • Composite bucket foundation breakwater is a new structure applicable for soft clay and large wave load conditions. A series of centrifuge tests are conducted to study the failure modes and bearing capacity of the structure as well as the effects of undrained strength of soils and load eccentricity. Main conclusions are as follows: the load-displacement curves for rotation angle, horizontal displacement and vertical displacement can be divided into elastic displacement stage and failure stage, except when the undrained strength of soils is 44.5 kPa, the failure stage of vertical displacement does not appear. With the increase of moment load, the rotation center moves downward below seabed level, and as the moment load reaches bearing capacity, the rotation center is located at bucket tip. When the undrained strength of soils and load eccentricity is low, the structure has a rotational and vertical displacement mode. As the load eccentricity increases to 10.5 m and 13.5 m, the displacement mode converts to a combination of rotational, horizontal and vertical displacements. As the undrained strength of soils increases to 44.5 kPa, the displacement mode converts to a combination of rotational and horizontal displacements. Under the same undrained strength of soils, the bearing capacity of the moment decreases linearly with the increase of the bearing capacity of horizontal load. Under the same load eccentricity, the bearing capacity of the moment increases linearly with the increase of the bearing capacity of horizontal load. The results reveal the failure mode and bearing capacity of the composite bucket foundation breakwater, and provides reference for the optimal design of the structure.
  • [1]
    MUSTAPA M A, YAAKOB O B, AHMED Y M, et al. Wave energy device and breakwater integration: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 43-58. doi: 10.1016/j.rser.2017.03.110
    [2]
    KOLEY S, SAHOO T. Wave interaction with a submerged semicircular porous breakwater placed on a porous seabed[J]. Engineering Analysis with Boundary Elements, 2017, 80: 18-37. doi: 10.1016/j.enganabound.2017.02.019
    [3]
    OUMERACI H. 1994. Review and analysis of vertical breakwater failures—lessons learned[J]. Coastal Engineering, 1994, 22(1/2): 3-39.
    [4]
    闫澍旺, 侯晋芳, 刘润, 等. 长江口导堤在波浪荷载作用下的稳定性研究[J]. 岩石力学与工程学报, 2006, 25(增1): 3245-3249. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1100.htm

    YAN Shu-wang, HOU Jin-fang, LIU Run, et al. Stability analysis of guide dike in Yangtze estuary under action of wave load[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 3245-3249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1100.htm
    [5]
    蔡正银, 杨立功, 何勇, 等. 新型桶式基础防波堤下沉分析及其对稳定性的影响[J]. 岩土工程学报, 2016, 38(12): 2287-2294. doi: 10.11779/CJGE201612018

    CAI Zheng-yin, YANG Li-gong, HE Yong, et al. Installation of new bucket foundation breakwater and its influence on stability[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2287-2294. (in Chinese) doi: 10.11779/CJGE201612018
    [6]
    肖忠, 王元战, 及春宁, 等. 筒型基础防波堤稳定性有限元数值分析[J]. 土木工程学报, 2009, 42(7): 828-833. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200907024.htm

    XIAO Zhong, WANG Yuan-zhan, JI Chun-ning, et al. Finite element analysis of the stability of bucket foundation breakwater[J]. China Civil Engineering Journal, 2009, 42(7): 828-833. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200907024.htm
    [7]
    蒋敏敏, 蔡正银, 徐光明, 等. 软土地基上箱筒型基础防波堤静力离心模型试验研究[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3865-3870. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2061.htm

    JIANG Min-min, CAI Zheng-yin, XU Guang-ming, et al. Experimental study of centrifugal model of bucket foundation breakwater on soft soil foundation under static load[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3865-3870. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2061.htm
    [8]
    张金来, 鲁晓兵, 王淑云, 等. 桶形基础极限承载力特性研究[J]. 岩石力学与工程学报, 2005, 24(7): 1169-1172. doi: 10.3321/j.issn:1000-6915.2005.07.014

    ZHANG Jin-lai, LU Xiao-bing, WANG Shu-yun, et al. The characteristics of the bearing capacity of bucket foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(7): 1169-1172. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.07.014
    [9]
    BRANSBY M F, YUN G J. The undrained capacity of skirted strip foundations under combined loading[J]. Géotechnique, 2009, 59(2): 115-125. doi: 10.1680/geot.2007.00098
    [10]
    WANG X, YANG X, ZENG X. Centrifuge modeling of lateral bearing behavior of offshore wind turbine with suction bucket foundation in sand[J]. Ocean Engineering, 2017, 139: 140-151. doi: 10.1016/j.oceaneng.2017.04.046
    [11]
    黎冰, 高玉峰, 沙成明, 等. 砂土中吸力式沉箱基础的最大承载力计算方法[J]. 东南大学学报(自然科学版), 2012, 42(6): 1201-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201206031.htm

    LI Bing, GAO Yu-feng, SHA Cheng-ming, et al. Calculation method for maximum bearing capacity of suction caisson foundation in sand[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(6): 1201-1205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201206031.htm
    [12]
    LIU M, YANG M, WANG H. Bearing behavior of wide-shallow bucket foundation for offshore wind turbines in drained silty sand[J]. Ocean Engineering, 2014, 82: 169-179. doi: 10.1016/j.oceaneng.2014.02.034
    [13]
    刘润, 祁越, 李宝仁, 等. 复合加载模式下单桩复合筒型基础地基承载力包络线研究[J]. 岩土力学, 2016, 37(5): 1486-1496. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201605035.htm

    LIU Run, QI Yue, LI Bao-ren, et al. Failure envelopes of single-pile composite bucket foundation of offshore wind turbine under combined loading conditions[J]. Rock and Soil Mechanics, 2016, 37(5): 1486-1496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201605035.htm
    [14]
    范庆来, 栾茂田. V-H-T荷载空间内海上风机桶形基础破坏包络面特性分析[J]. 土木工程学报, 2010,43(4): 113-118. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201004020.htm

    FAN Qing-lai, LUAN Mao-tian. Failure envelopes of bucket foundation for offshore wind turbines in V-H-T loading space[J]. China Civil Engineering Journal, 2010, 43(4): 113-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201004020.htm
    [15]
    ZHANG J H, ZHANG L M, LU X B. Centrifuge modeling of suction bucket foundations for platforms under ice-sheet-induced cyclic lateral loadings[J]. Ocean Engineering, 2007, 34(8/9): 1069-1079.
    [16]
    ZHU B, BYRNE B W, HOULSBY G T. Long-term lateral cyclic response of suction caisson foundations in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(1): 73-83. doi: 10.1061/(ASCE)GT.1943-5606.0000738
    [17]
    COX J A, O'LOUGHLIN C D, CASSIDY M, et al. Centrifuge study on the cyclic performance of caissons in sand[J]. International Journal of Physical Modelling in Geotechnics, 2014, 14(4): 99-115. doi: 10.1680/ijpmg.14.00016
    [18]
    KIM D J, CHOO Y W, KIM J H, et al. Investigation of monotonic and cyclic behavior of tripod suction bucket foundations for offshore wind towers using centrifuge modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5): 04014008-1-11.
    [19]
    杨立功, 蔡正银, 徐志峰. 新型桶式基础防波堤桶体阻力分析[J]. 岩土工程学报, 2016, 38(4): 747-754. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604024.htm

    YANG Li-gong, CAI Zheng-yin, XU Zhi-feng. Numerical analysis of bucket resistance of new bucket foundation breakwater[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 747-754. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604024.htm
    [20]
    王元战, 肖忠, 李元音, 等. 筒型基础防波堤土压力性状的有限元分析[J]. 岩土工程学报, 2009, 31(4): 622-627. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200904027.htm

    WANG Yuan-zhan, XIAO Zhong, LI Yuan-yin, et al. Finite element analysis for earth pressure on bucket foundation of breakwater[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 622-627. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200904027.htm
    [21]
    肖忠, 王元战, 及春宁. 基于极限平衡法的箱筒型基础防波堤稳定性分析[J]. 岩土工程学报, 2013, 35(5): 828-833. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305004.htm

    XIAO Zhong, WANG Yuan-zhan, JI Chun-ning. Stability analysis of bucket foundation breakwaters based on limit equilibrium method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 828-833. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305004.htm
    [22]
    王元战, 肖忠, 迟丽华, 等. 筒型基础防波堤稳定性简化计算方法[J]. 岩土力学, 2009, 30(5): 1367-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905034.htm

    WANG Yuan-zhan, XIAO Zhong, CHI Li-hua, et al. A simplified calculation method for stability of bucket foundation breakwater[J]. Rock and Soil Mechanics, 2009, 30(5): 1367-1372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905034.htm
    [23]
    LOH C K, TAN T S, LEE F H. Three-dimensional excavation test[C]//Proceedings of the International Conference Centrifuge 98, 1998, Tokyo: 649-654.
    [24]
    蒋敏敏, 徐光明, 顾行文. 离心模型试验饱和黏性土制备和固结分析[C]//第25届全国土工测试学术研讨会论文集, 2008, 杭州: 375-378.

    JIANG Min-min, XU Guang-ming, GU Xing-wen. Preparation and analysis of saturated clay consolidation in centrifuge model test[C]//Proceedings of the 25th Chinese Academic Seminar on Geotechnical Soil Testing, 2008, Hangzhou: 375-378. (in Chinese)
    [25]
    VILLALOBOS F A, BYRNE B W, HOULSBY G T. An experimental study of the drained capacity of suction caisson foundations under monotonic loading for offshore applications[J]. Soils and Foundations, 2009, 49(3): 477-488.
    [26]
    HUNG L C, KIM S R, 2014. Evaluation of undrained bearing capacities of bucket foundations under combined loads[J]. Marine Georesources & Geotechnology, 2014, 32(1): 76-92.
    [27]
    DING H, LIU Y, ZHANG P. Model tests on the bearing capacity of wide-shallow composite bucket foundations for offshore wind turbines in clay[J]. Ocean Engineering, 2015(103): 114-122.
    [28]
    LEBLANC C, HOULSBY G T, BYRNE B W. Response of stiff piles in sand to long-term cyclic lateral loading[J]. Géotechnique, 2010, 60(2): 79-90.
    [29]
    郑刚, 俞丹瑶, 程雪松, 等. 考虑土体强度不均匀性时宽窄基坑坑底隆起稳定研究[J]. 岩土工程学报, 2019, 41(增刊1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1002.htm

    ZHENG Gang, YU Dan-yao, CHENG Xue-song, et al. Basal heave stability of wide and narrow excavations considering non-homogeneous features of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1002.htm
  • Cited by

    Periodical cited type(8)

    1. 冯德銮,黎森宇,梁仕华. 水泥固化滨海软土动力特性研究进展与评述. 广东工业大学学报. 2024(02): 23-36 .
    2. 王喆恺,谭慧明,陶小三. 应力路径对盐城粉质黏土动剪切模量影响试验研究. 中国港湾建设. 2024(08): 44-49+73 .
    3. 苟乐宇,李飒,张先伟. 菌丝–砂复合轻质土的静力强度特性研究. 岩石力学与工程学报. 2024(10): 2590-2598 .
    4. 杨海华,刘亮,刘汉龙,高鹏展,陈育民. 高聚物胶凝戈壁土的动模量及阻尼比试验研究. 振动与冲击. 2023(03): 12-20 .
    5. 何俊,张驰,管家贤,吕晓龙. 碱渣固化疏浚淤泥的动变形特性研究. 岩石力学与工程学报. 2023(S1): 3712-3721 .
    6. 郭鹏斐,侯天顺,刘茜,骆亚生. 直剪试验方法对轻量土抗剪强度的影响规律研究. 水利水电技术(中英文). 2023(04): 161-170 .
    7. 杨凯旋,侯天顺,王琪,骆亚生. 剪切速率对EPS颗粒混合轻量土抗剪强度的影响规律研究. 水资源与水工程学报. 2022(05): 200-207 .
    8. 侯天顺,郭鹏斐,杨凯旋,王琪,骆亚生. 发泡颗粒混合轻量土静止土压力特性及计算方法研究. 岩土工程学报. 2022(12): 2234-2244 . 本站查看

    Other cited types(17)

Catalog

    Article views (321) PDF downloads (214) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return