• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
LIU Meng-cheng, MENG Feng, WANG Yang-yang. Evolution of particle crushing of coarse-grained materials in large-scale triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 561-567. DOI: 10.11779/CJGE202003018
Citation: LIU Meng-cheng, MENG Feng, WANG Yang-yang. Evolution of particle crushing of coarse-grained materials in large-scale triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 561-567. DOI: 10.11779/CJGE202003018

Evolution of particle crushing of coarse-grained materials in large-scale triaxial tests

More Information
  • Received Date: March 27, 2019
  • Available Online: December 07, 2022
  • By analyzing the progressive evolution of particle crushing of crushable soils, four basic properties of particle crushing are presented, and three characteristic states are also given over long-term or repeated loading. Two breakage indexes, namely the global and or breakage index, are defined for the crushable soils to distinguish temporary stop from perpetual termination of particle crushing, and a mathematical relationship is put forward between the revised relative breakage and the grading index. A series of consolidated drained large-scale triaxial tests are conducted for the coarse-grained materials (CGMs). The evolution of particle grading and breakage is analyzed, and some mathematical formulations are presented for various breakage indexes, which exhibits a entire rule of particle crushing of CGMs under the monotonic loads: (1) The global breakage has a negative exponential increase with the non-moralized deviatoric stress and the mean principal stress upon shearing. (2) At the end of consolidation or in the critical state, it increases merely with the non-moralized mean principal stress which meets the above-mentioned negative exponential function. (3) The local breakage varies with the stress level in a way of hyperbolic function and approaches 1 in the critical state.
  • [1]
    日本土质工学会(日). 堆石料的现场压实[M]. 郭熙灵,等译.北京: 中国水利水电出版社, 1999.

    Association of Geotechnique of Japan. In-Situ Compaction of Coarse- Grained Materials[M]. GUO Xi-ling, et al trans. Beijing: China Water Power Press, 1999. (in Chinese)
    [2]
    SEBASTINA L G. Evaluation of Crushing in Granular Materials Using the Discrete Element Method and Fractal Theory[D]. Pittsburgh: University of Pittsburgh, 2006.
    [3]
    MARSAL R J. Large scale testing of rockfill materials[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1967, 93(2): 27-43. doi: 10.1061/JSFEAQ.0000958
    [4]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
    [5]
    LADE P V, YAMAMURO J A, BOPP P A. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(4): 309-316. doi: 10.1061/(ASCE)0733-9410(1996)122:4(309)
    [6]
    MUIR W D, MAEDA K. Changing grading of soil: effect on critical state[J]. Acta Geotechnica, 2008, 3(1): 3-14. doi: 10.1007/s11440-007-0041-0
    [7]
    XIAO Y, LIU H L. Elastoplastic constitutive model for rockfill materials considering particle breakage[J]. International Journal of Geomechanics, ASCE, 2017, 17(1): 1-13.
    [8]
    EINAV I. Breakage mechanics-part I: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274-1297. doi: 10.1016/j.jmps.2006.11.003
    [9]
    MCDOWELLL G R, BOLTON M D. On the micromechanics of crushable aggregates[J]. Géotechnique, 1998, 48(5): 667-679. doi: 10.1680/geot.1998.48.5.667
    [10]
    尹振宇, 许强, 胡伟. 考虑颗粒破碎效应的粒状材料本构研究:进展及发展[J]. 岩土工程学报, 2012, 34(12): 2170-2180. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212006.htm

    YIN Zhen-yu, XU Qiang, HU Wei. Constitutive relations for granular materials considering particle crushing: review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212006.htm
    [11]
    KIKUMOTO M, MUIR WOOD D, RUSSELL A. Particle crushing and deformation behavior[J]. Soils and Foundations, 2010, 50(4): 547-563. doi: 10.3208/sandf.50.547
    [12]
    KAN E M, TAIEBAT H A. A bounding surface plasticity model for highly crushable[J]. Soils and Foundations, 2014, 54(6): 1188-1201. doi: 10.1016/j.sandf.2014.11.012
    [13]
    LIU H B, ZOU D G. Associated generalized plasticity framework for modeling gravelly soils considering particle breakage[J]. Journal of Engineering Mechanics, ASCE, 2013, 139(5): 606-615. doi: 10.1061/(ASCE)EM.1943-7889.0000513
    [14]
    LIU M C, ZHANG Y, ZHU H Z. 3D elastoplastic model for crushable soils with explicit formulation of particle crushing[J]. Journal of Engineering Mechanics, ASCE, 2017, 143(12): 1-18.
    [15]
    LIU M C, GAO Y F, LIU H L. An elastoplastic constitutive model for rockfills incorporating energy dissipation of nonlinear friction and particle breakage[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(9): 935-960. doi: 10.1002/nag.2243
    [16]
    刘萌成, 高玉峰, 刘汉龙. 模拟堆石料颗粒破碎对强度变形的影响[J]. 岩土工程学报, 2011, 33(11): 1691-1699. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201111010.htm

    LIU Meng-cheng, GAO Yu-feng, LIU Han-long. Effect of particle breakage on strength and deformation of modeled rockfills[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1691-1699. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201111010.htm
    [17]
    TURCOTTE D L. Fractals and fragmentation[J]. Journal of Geophysical Research, 1986, 91(B2): 1921-1926. doi: 10.1029/JB091iB02p01921
    [18]
    SAMMIS C G, KING G, BIEGEL R. The kinematics of gouge deformations[J]. Pure Applied Geophysics, 1987, 125(5): 777-812.
    [19]
    刘萌成, 高玉峰, 刘汉龙. 应力路径条件下堆石料剪切特性大型三轴试验研究[J]. 岩石力学与工程学报, 2008, 27(1): 176-186. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200801025.htm

    LIU Meng-cheng, GAO Yu-feng, LIU Han-long. Study on shear behaviors of rockfill in large-scale triaxial tests under different stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 176-186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200801025.htm
    [20]
    JIA Y F, XU B, CHI S C, et al. Research on the particle breakage of rockfill materials during triaxial tests[J]. International Journal of Geomechanics, ASCE, 2017, 17(10): 1-11.
  • Related Articles

    [1]ZHAO Yong, YANG Tian-hong, WANG Shu-hong, JIA Peng. Damage analysis method for mining rock mass based on microseismic-derived fractures and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 305-314. DOI: 10.11779/CJGE202202012
    [2]CHEN Lei, LI Shu-cai, LIU Bin, LI Ming, XU Xin-ji, LI Ning-bo, NIE Li-chao. Imaging method of seismic advanced detection in tunnels based on ellipse evolving CRP stacking and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1029-1038. DOI: 10.11779/CJGE201806008
    [3]LIU Xin-rong, LIU Yong-quan, YANG Zhong-ping, TU Yi-liang. Synthetic advanced geological prediction technology for tunnels based on GPR[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 51-56. DOI: 10.11779/CJGE2015S2011
    [4]XUE Luan-luan. Composite element algorithm of seepage-normal stress coupling for fractured rock masses with drainage holes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1429-1434.
    [5]LIU Bin, LI Shu-cai, NIE Li-chao, LI Li-ping, LIU Zheng-yu, SONG Jie, SUI Bin, ZHOU Zong-qing. Inversion imaging of 3D resistivity detection using adaptive-weighted smooth constraint and PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1646-1653.
    [6]Monitoring method for influence circle due to temperature variation in underground rock stratum[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1727-1732.
    [7]XU Nengxiong, WU Xiong, WANG Xiaogang, JIA Zhixin, DUAN Qingwei. Approach to automatic hexahedron mesh generation for rock-mass with complex structure based on 3D geological modeling[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 957-961.
    [8]Pei Jue min, Lu Zu heng. The  Static  and  Dynamic  Methods  of  DDA  for  Jointed  Rock  Mass[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(6): 50-58.
    [9]Mao Changxi, Chen Ping, Li Zuyi, Li Dingfang. Study on Computation Methods of Seepage Flow in Fractured Rock Masses[J]. Chinese Journal of Geotechnical Engineering, 1991, 13(6): 1-10.
    [10]SU He-yuan. 抽、灌水作用下上海土层变形特征的探讨[J]. Chinese Journal of Geotechnical Engineering, 1979, 1(1): 24-35.
  • Cited by

    Periodical cited type(3)

    1. 刘瑞冰,韩晓冬,李民举,柳正,马建军. 高落差整体式主裙楼筏板基础沉降差控制分析. 科技和产业. 2025(07): 43-49 .
    2. 林杰. 某超高层桩基础设计与沉降计算分析. 福建建筑. 2025(04): 72-79 .
    3. 郭开麟,沈秉新,张玉兰. 基于DeepAR模型的建筑桩基沉降预测. 新城建科技. 2024(07): 151-154 .

    Other cited types(0)

Catalog

    Article views (348) PDF downloads (212) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return