• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Jun-tang, LIU Yuan-xue, ZHENG Ying-ren, HE Shao-qi. Deep mining of big data and model tests on dilatancy characteristics of dilatant soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 513-522. DOI: 10.11779/CJGE202003013
Citation: YANG Jun-tang, LIU Yuan-xue, ZHENG Ying-ren, HE Shao-qi. Deep mining of big data and model tests on dilatancy characteristics of dilatant soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 513-522. DOI: 10.11779/CJGE202003013

Deep mining of big data and model tests on dilatancy characteristics of dilatant soils

More Information
  • Received Date: July 03, 2019
  • Available Online: December 07, 2022
  • The dilatancy of soils is an important basis for constitutive models, and the current dilatancy models do not fully reveal their common laws, which is also an important reason why the existing constitutive models cannot well reflect the deformation mechanism of soils. Based on the Hadoop and Spark computing platform, a distributed Levenberg Marquardt regression (DLMR) algorithm for deep mining of big data with strong global optimization, fast convergence and computational stability is proposed. Based on a large number of experimental data of dilatancy characteristics of dilatant soils, according to the DLMR algorithm and the basic mechanical properties of soils, the big data characteristics of dilatancy of dilatant soils are obtained. It is found that there are obvious nonlinear characteristics between dilatancy ratio and stress, strain and stress increment, and the correlation functions between them are established respectively. On this basis, a dilatancy model which can reflect the common law of dilatancy characteristics of dilatant soils is constructed. Through model comparison, it is shown that the proposed model is superior to the dilatancy model of modified Cambridge model and Rowe model. By simulating the triaxial compression experimental data of dilatant soils under different stress paths, it is shown that the new model can well reflect the dilatancy under different stress paths.
  • [1]
    董晓丽, 赵成刚. 剪胀性饱和砂土弹塑性模型[J]. 应用力学学报, 2016, 33(4): 541-546. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201604001.htm

    DONG Xiao-li, ZHAO Chen-gang. The dilatancy saturated dense sand elastic-plastic model[J]. Chinese Journal of Applied Mechanics, 2016, 33(4): 541-546. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201604001.htm
    [2]
    PRADHAN T B S, TATSUOKA F, SATO Y. Experimental stress-dilatancy relations of sand subjected to cyclic loading[J]. Soils and Foundations, 1987, 29(1): 45-64.
    [3]
    MATSUOKA H, SAKAKIBARA K. A constitutive model for sands and clays evaluating principal stress rotation[J]. Soils and Foundations, 1987, 27(4): 73-88. doi: 10.3208/sandf1972.27.4_73
    [4]
    REYNOLDS O. On the dilatancy of media composed of rigid particles in contact with experimental illustrations[J]. Philosophical Magazine, 1885, 20(127): 469-481.
    [5]
    ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1962, 269(1339): 500-527.
    [6]
    殷志祥, 高哲, 张建成, 等. 考虑颗粒破碎引起级配演变的道砟边界面本构模型[J]. 岩土力学, 2017, 38(9): 2669-2675. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709029.htm

    YIN Zhi-xiang, GAO Zhe, ZHANG Jiang-cheng, et al. Boundary surface model for railway ballast considering gradation evolution caused by particle breakage[J]. Rock and Soil Mechanics, 2017, 38(9): 2669-2675. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709029.htm
    [7]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 22(6): 99-112.
    [8]
    CUBRINOVSKI M, ISHIHARA K. Modeling of sand behavior based on state concept[J]. Soils and Foundations, 1998, 38(3): 115-127. doi: 10.3208/sandf.38.3_115
    [9]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
    [10]
    ANTONIO D S, CLAUDIO T. Stress-dilatancy based modelling of granular materials and extensions to soils with crushable grains[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(4): 73-101.
    [11]
    FERN E J, ROBERT D J, SOQA K. Modeling the stress-dilatancy relationship of unsaturated silica sand in triaxial compression tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(11): 04016055. doi: 10.1061/(ASCE)GT.1943-5606.0001546
    [12]
    PATIL U D, HOYOS L R, PUPPALA A J, et al. Modeling stress-dilatancy behavior of compacted silty sand under suction-controlled axisymmetric shearing[J]. Geotechnical and Geological Engineering, 2018, 36(6): 3961-3977. doi: 10.1007/s10706-018-0647-z
    [13]
    李广信, 郭瑞平. 土的卸载体缩与可恢复剪胀[J]. 岩土工程学报, 2000(2): 158-161. doi: 10.3321/j.issn:1000-4548.2000.02.003

    LIN Guang-xin, GUO Rui-ping. Volume-contraction in unloading of shear tests and reversible dilatation of soils[J]. Chinese Journal of Geotechnical Engineering, 2000(2): 158-161. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.02.003
    [14]
    张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1): 15-20.

    ZHANG Jiang-min. Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 15-20. (in Chinese)
    [15]
    刘元雪, 施建勇. 土的可恢复性剪胀的一种解释[J]. 岩土力学, 2002, 23(3): 304-308. doi: 10.3969/j.issn.1000-7598.2002.03.011

    LIU Yuan-xue, SHI Jian-yong. A kind of explanation of reversible dilatancy of soils[J]. Rock and Soil Mechanics, 2002, 23(3): 304-308. (in Chinese) doi: 10.3969/j.issn.1000-7598.2002.03.011
    [16]
    迟明杰, 赵成刚, 李小军. 砂土剪胀机理的研究[J]. 土木工程学报, 2009, 42(3): 99-104. doi: 10.3321/j.issn:1000-131X.2009.03.017

    CHI Ming-jie, ZHAO Cheng-gang, LI Xiao-jun. Stress-dilation mechanism of sands[J]. China Civil Engineering Journal, 2009, 42(3): 99-104. (in Chinese) doi: 10.3321/j.issn:1000-131X.2009.03.017
    [17]
    熊焕, 郭林, 蔡袁强. 主应力轴变化下非共轴对砂土剪胀特性影响[J]. 岩土力学, 2017, 38(1): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701018.htm

    XIONG Huan, GUO Lin, CAI Yuan-qiang. Effect of non-coaxiality on dilatancy of sand involving principal stress axes rotation[J]. Rock and Soil Mechanics, 2017, 38(1): 133-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701018.htm
    [18]
    孙逸飞, 陈成. 无状态变量的状态依赖剪胀方程及其本构模型[J]. 岩土力学, 2019, 40(5): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905022.htm

    SUN Yi-fei, CHEN Cheng. A state-dependent stress-dilatancy equation without state index and its associated constitutive model[J]. Rock and Soil Mechanics, 2019, 40(5): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905022.htm
    [19]
    陆勇, 周国庆, 顾欢达. 高低压下不同力学特性的砂土统一模型[J]. 岩土力学, 2018, 39(2): 614-620. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802027.htm

    LU Yong, ZHOU Guo-qing, GU Huan-da. Unified model of sand with different mechanical characteristics under high and low pressures[J]. Rock and Soil Mechanics, 2018, 39(2): 614-620. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802027.htm
    [20]
    刘斯宏, 沈超敏, 毛航宇, 等. 堆石料状态相关弹塑性本构模型[J]. 岩土力学, 2019, 40(8): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908002.htm

    LIU Si-hong, SHEN Chao-min, MAO Hang-yu, et al. State-dependent elastoplastic constitutive model for rockfill materials[J]. Rock and Soil Mechanics, 2019, 40(8): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908002.htm
    [21]
    LI Q, LING X, HU J, et al. Experimental investigation on dilatancy behavior of frozen silty clay subjected to long-term cyclic loading[J]. Cold Regions Science and Technology, 2018, 153(1): 156-163.
    [22]
    朱合华, 武威, 李晓军, 等. 基于iS3平台的岩体隧道信息精细化采集、分析与服务[J]. 岩石力学与工程学报, 2017, 36(10): 2350-2364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710002.htm

    ZHU He-hua, WU Wei, LI Xiao-jun, et al. High-precision Acquisition, analysis and service of rock tunnel information based on iS3 platform[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2350-2364. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710002.htm
    [23]
    黄宏伟, 李庆桐. 基于深度学习的盾构隧道渗漏水病害图像识别[J]. 岩石力学与工程学报, 2017, 36(12): 2861-2871. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201712001.htm

    HUANG Hong-wei, LI Qing-tong. Image recognition for water leakage in shield tunnel based on deep learning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2861-2871. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201712001.htm
    [24]
    黄发明, 殷坤龙, 蒋水华, 等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报, 2018, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm

    HUANG Fa-ming, YIN Kun-long, JAING Shui-hua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 156-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
    [25]
    李松洋, 白瑞林, 李杜. 基于PMPSD的工业机器人几何参数标定方法[J]. 计算机工程, 2018, 44(1): 17-22.

    LI Song-yang, BAI Rui-lin, LI Du. Method of geometric parameters calibration for industrial robot based on PMPSD[J]. Computer Engineering, 2018, 44(1): 17-22. (in Chinese)
    [26]
    宋哲理, 王超, 王振飞. 基于MapReduce的多级特征选择机制[J]. 计算机科学, 2018, 45(S2): 468-473. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2018S2097.htm

    SONG Zhe-li, WANG Chao, WANG Zhen-fei. Multi-level feature selection mechanism based on MapReduce[J]. Computer Science, 2018, 45(S2): 468-473. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2018S2097.htm
    [27]
    ROSCOE K H, BURLAND J B. On the generalized stress-strain behavior of wet clay[J]. Journal of Terramechanics, 1970, 7(2): 107-108.
    [28]
    姚仰平, 侯伟, 罗汀. 土的统一硬化模型[J]. 岩石力学与工程学报, 2009, 28(10): 2135-2151. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200910027.htm

    YAO Yang-ping, HOU Wei, LUO Ding. Unified hardening model for soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2135-2151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200910027.htm
    [29]
    姚仰平, 黄冠, 王乃东, 等. 堆石料的应力-应变特性及其三维破碎本构模型[J]. 工业建筑, 2011, 41(9): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201109004.htm

    YAO Yang-ping, HUANG Guan, WANG Nai-dong. Stress-strain characteristic and three-dimensional constitutive model of rockfill considering crushing[J]. Industrial Construction, 2011, 41(9): 12-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201109004.htm
    [30]
    SHIVELY H L. A state dependent constitutive model for rockfill materials[J]. International Journal of Geomechanics, 2014, 15(5): 969-970.
    [31]
    CHEN C, ZHANG J. Constitutive modeling of loose sands under various stress paths[J]. International Journal of Geomechanics, 2013, 13(1): 1-8.
    [32]
    YAMAMURO J A, ABRANTES A E. Behavior of medium sand under very high strain rates[J]. Geotechnical Special Publication, 2005(143): 61-70.
    [33]
    PENUMADU D, ZHAO R. Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)[J]. Computers and Geotechnics, 1999, 24(3): 207-230.
  • Cited by

    Periodical cited type(14)

    1. 姜淑印,李向阳,杨超,尹磊建,王佳奇,朱利勇. 考虑析水效应的PPGF浆液扩散规律与抗分散特征. 金属矿山. 2025(04): 43-53 .
    2. 蔡跃辉. 动水注浆堵漏技术研究现状与发展情况. 科技创新与应用. 2025(13): 177-180 .
    3. 李海燕,夏茂哲,张锟,张波,孙怀凤,赵国东,韩俊飞,刘功杰,贺恩磊. 岩溶凹陷式露天矿山大流量涌水治理技术. 煤炭科学技术. 2024(01): 267-279 .
    4. 林久卿,牛昊,刘致延,李晓亮,王彦哲,李召峰,陈经棚. 水泥基矽土注浆材料抗海水侵蚀性能研究. 防灾减灾工程学报. 2024(03): 551-559 .
    5. 付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 . 本站查看
    6. 陈亮,孙晨,王雷雨,邵晓妹,胡靖宇. 引水隧洞超前预处理灌浆材料研究与应用进展. 南水北调与水利科技(中英文). 2024(06): 1181-1188 .
    7. 雷华阳,施福硕,刘旭,崔溦. 砂性地层中植物胶改性泥浆性质及渗透成膜试验研究. 岩土工程学报. 2023(02): 394-401 . 本站查看
    8. 张胜杰,王鸥,王天亮,王林,刘松松. 黄原胶及瓜尔胶改良尾矿砂强度特性及微观机制. 工程地质学报. 2023(02): 441-448 .
    9. 周中,邓卓湘,鄢海涛,张俊杰. 岩溶区隧道新型绿色注浆材料试验研究. 铁道工程学报. 2023(07): 63-68 .
    10. 吴龙骥,吴志军,翁磊. 聚丙烯酸酯改性水泥注浆材料力学性能与微观结构研究. 力学与实践. 2023(05): 999-1009 .
    11. 夏冲,李传贵,冯啸,赵宏魁,张思峰,武剑峰. 水泥粉煤灰-改性水玻璃注浆材料试验研究与应用. 山东大学学报(工学版). 2022(01): 66-73+84 .
    12. 付宏渊,查焕奕,潘浩强,曾铃,刘杰. 生物聚合物改良预崩解炭质泥岩水稳性及冲刷试验研究. 中南大学学报(自然科学版). 2022(07): 2633-2644 .
    13. 张昊,胡相明,王伟,梁运涛,王兆喜,刘金举,白光星,赵艳云,吴明跃. 黄原胶和氧化镁改性黏土-水泥基新型喷涂堵漏风材料的制备及特征. 煤炭学报. 2021(06): 1768-1780 .
    14. 康正斌,李小强,巩越. 强渗透涌水地层注浆新材料的配制与工程特性研究. 新型建筑材料. 2021(12): 19-23 .

    Other cited types(16)

Catalog

    Article views PDF downloads Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return